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Abstract

Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombina-
tional repair, and maintenance of genome stability. In human, the major SSB, replication protein A
(RPA), is a stable heterotrimer composed of subunits of RPA1, RPA2, and RPA3, each of which is
conserved not only in mammals but also in all other eukaryotic species. In addition to RPA, other
SSBs have also been identified in the human genome, including sensor of single-stranded DNA
complexes 1 and 2 (SOSS1/2). In this review, we summarize our current understanding of how
these SSBs contribute to the maintenance of genome stability.
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Introduction

Although genetic information is carried by double-stranded DNA
(dsDNA), the practical use of that information requires the unwind-
ing of duplex DNA [1,2]. As a result, single-stranded DNA (ssDNA)
is probably one of the most abundant and important DNA inter-
mediate structures in cells [1]. However, ssDNA is less stable and
very easily forms spontaneous duplex DNA or is attacked by chem-
ical and nucleolytic reagents. To deal with these risks, cells have
evolved a group of protective ssDNA-binding proteins (SSBs) that
bind ssDNA with high affinity and specificity [1,2].

SSBs are found in all bacterial, archaeal, and eukaryotic cells.
Although they have a wide range of sequences and differ markedly
in their subunit composition and oligomerization states, they all
bind to ssDNA with high affinity and in a sequence-independent
manner [1,2]. In this way, SSBs form nucleoprotein complexes with
ssDNA, which serve as substrates for DNA replication, recombin-
ation, and repair processes. The only conserved motif that all SSBs
have is the DNA-binding oligonucleotide/oligosaccharide binding
(OB) fold, which is responsible for both ssDNA binding and oligo-
merization [3,4]. The primary sequence of OB folds is not well

conserved, and they can vary in length from 70 to 150 amino acids,
but each consists of at least a five-stranded β-sheet arranged as a
β-barrel capped by an α-helix [3,5].

Replication Protein A: The Major SSB

in Eukaryotic Cells

Replication protein A (RPA) is a nuclear SSB complex found in all
eukaryotes and is required for many aspects of DNA metabolism
[1,2,6,7]. It is produced by three separate genes encoding three sub-
units and functions as a heterotrimer. The three subunits of RPA are
RPA1 (70 kDa), RPA2 (32 kDa), and RPA3 (14 kDa) [8–10]. RPA1
has four domains and is responsible for most of the complex’s
DNA-binding activity, including one N-terminal protein–protein
interaction domain (amino acids 1–110, DBD-F) and three ssDNA-
binding domains (DBD), arranged in tandem [DBD-A (amino acids
181–290), DBD-B (amino acids 301–422), and DBD-C (amino acids
436–616)] [11–14] (Fig. 1). RPA2 is the medium-sized subunit and
has three domains, with the central domain called DBD-D (Fig. 1).
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As the smallest subunit, RPA3 has only one domain (DBD-E)
(Fig. 1). RPA was first defined and purified from human HeLa cell
extracts in a study of DNA replication using a simian virus 40
(SV40) model system, as an indispensable component of SV40 DNA
replication [15–17]. In a highly original study, RPA was found to
successfully perform unwinding functions with T antigen, a virally
encoded protein [18]. Since then, RPA has been studied extensively
and is thought to be a crucial eukaryotic SSB involved in DNA repli-
cation, DNA recombination, and DNA repair. Homologs of the
human RPA protein complex have been identified from almost every
examined eukaryotic organism, and significant homology among
species has been revealed for RPA proteins, especially RPA1, at the
amino acid level [19–25].

Interactions of RPA with DNA

Over the past few decades, the DNA-binding properties of RPA
have been investigated extensively, and several important features
have been revealed. First, RPA binds to ssDNA with much higher
affinity than to dsDNA or RNA [15,16,26]. Specifically, it was
reported that RPA binds to ssDNA over 1000-folds more effectively
than to dsDNA [27]. Second, the binding of RPA also exhibits
sequence dependence, since it occurs preferentially at polypyrimidine
sequences, rather than at polypurine ones [28,29]. Third, the length
of the ssDNA sequence is also important for RPA binding [27].
Shorter ssDNA sequences have much lower binding affinity for RPA
than the longer ones [27].

As mentioned above, the RPA complex contains six OB folds,
four of which belong to the largest subunit, RPA1 [15,26,30]. Initial
studies of RPA in human cells indicated that only the RPA1 subunit
has significant ssDNA-binding activity, and that the ability of RPA1
to bind to ssDNA is similar to that for the whole heterotrimer
[30,31]. Following the identification of residues ~180–420 as the
DBD, further analysis in scRPA revealed that this central region of
RPA1 contains two subdomains, DBD-A and DBD-B [11].
Moreover, studies of the crystal structure confirmed that the central
DBD of hsRPA1 (residues 181–422) is composed of two subdo-
mains with similar structures: DBD-A (residues 198–291) and DBD-
B (residues 305–402), connected by a 15-amino acid linker
[6,11,12,32–35].

However, the idea that RPA1 is the only DNA-binding subunit
was soon challenged. First, a new RPA 8–10-nucleotide (nt) com-
plex was identified, in addition to the known RPA 30-nt complex,
which suggested the possibility that RPA could bind to ssDNA via
multiple sites [28,36]. Researchers subsequently found that RPA2
could also bind to ssDNA. In contrast, human RPA2–RPA3 com-
plex purified from Escherichia coli did not show significant ssDNA-
binding activity and did not support SV40 DNA replication in vitro [37].
Despite such contradictory results, further research has suggested

that the RPA2 DBD only becomes accessible after RPA1–ssDNA
binding has occurred [38].

It was further revealed that the C-terminal region (residues 416–
621) of RPA1 also contains a DBD (DBD-C), which is the fourth
DBD that has been defined in the RPA complex [14]. It is now
believed that such binding occurs sequentially, with the DBD-A and
DBD-B motifs in RPA1 binding weakly to an 8–10 nt segment, fol-
lowed by conformational changes that allow DBD-C and DBD-D to
interact with longer ssDNA substrates (~30 nt) [39].

RPA and DNA Replication

As a main ssDNA-binding protein in eukaryotic cells, RPA is an
essential factor in cellular DNA metabolism and plays key roles in
multiple physiological processes, including DNA replication, cell
division, and DNA repair [6].

Polyomavirus DNA replication systems such as SV40, BKV, and
JCV are perfect model systems to study eukaryotic DNA replication.
Among them, SV40 DNA replication is now best understood
[17,40]. In this system, the viral genome is replicated via the collab-
oration of large T-antigen helicase and multiple proteins supplied by
the host cell [41]. Researchers found that RPA, together with T anti-
gen, assists in the origin unwinding [42]. Biochemical and genetic
evidence has revealed that RPA interacts with T antigen and DNA
polymerase α complex directly [43–49]. Taken together, these results
suggest that the role of the RPA complex in SV40 DNA replication
initiation does not depend solely on the protein–protein interaction
of RPA with other proteins and its ssDNA-binding activity [48].
Besides T antigen and DNA polymerase α, other proteins involved
in DNA replication, such as bovine papillomavirus E2, Epstein–Barr
virus, and PCNA, have also been reported to interact physically
with RPA [50–52]. Researchers even found some transactivator pro-
teins, such as VP16 and GAL4, that bind to the RPA complex
through direct interaction with RPA1, either to stabilize ssDNA at
the replication origin or to recruit DNA polymerase α to the replica-
tion initiation complex [53].

hPrimpol1 is a recently identified DNA primase–polymerase that
is involved in the response to DNA replication stress [54–62]. It
possesses both primase and DNA polymerase activities in vitro and
is recruited to sites of DNA damage and stalled replication forks
through its direct interaction with RPA1 [57–62]. Evidence has
indicated that RPA1 binding is required for the cellular function of
hPrimol1 in response to DNA replication stress [57–62].

RPA and DNA Repair

Besides DNA replication, RPA is critical in many DNA repair pro-
cesses, including nucleotide excision repair (NER), base excision
repair (BER), mismatch repair (MMR), double-strand break (DSB)
repair, and even telomere maintenance [2,6].

RPA and NER
NER is a DNA repair mechanism that repairs a broad spectrum of
DNA damage, including cyclobutane pyrimidine dimers resulting
from ultraviolet (UV) irradiation, as well as other types of lesions
[63,64]. It was reported that RPA interacts with xeroderma pig-
mentosum group A (XPA), an early response factor in the NER
pathway, and then stimulates its ability to bind to the damaged
DNA site [65–68]. XPA is one of the pivotal factors in NER, since
XPA deficiency results in relatively high sensitivity of cells in

Figure 1. Schematic representation of human RPA
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response to UV light [69]. However, XPA itself has no enzyme activ-
ity and must function through a complex that includes multiple pro-
teins (RPA, ERCC1, DDB2, and TFIIH) and damaged DNA
[66,70,71]. It has been reported that RPA1 binds to the N-terminal
region of XPA, and RPA2 binds to its central region [68]. The inter-
action between XPA and RPA is the first critical step in the entire
NER pathway. Once the XPA–RPA complex is formed, the
ERCC1–XPF and XPG endonucleases are recruited to the damaged
site for excision [65,66,72]. It has also been reported that RPA inter-
acts with XPG directly [73]. Although the direct interaction between
RPA and ERCC1–XPF has not been detected, a ternary interaction
among XPA, RPA, and ERCC1–XPF has been observed [72]. In
addition, RPA is also involved in the gap-filling stage of NER, along
with PCNA, RFC, and DNA polymerase δ or ε [73].

RPA and BER
Besides the NER pathway, RPA also participates in BER, although
the function of RPA in BER remains somewhat unclear, and the
results obtained thus far are confusing. One important protein
named uracil-DNA glycosylase (UNG) plays critical roles in BER
and has been reported to physically interact with RPA [74].
However, RPA has shown only very weak inhibitory effects on
UNG activity [74]. In addition, researchers have observed that RPA
markedly stimulates long-patch BER by facilitating gap filling along
with DNA polymerase ε [75].

RPA and MMR
The MMR system recognizes and repairs base–base mismatches,
insertion–deletion loops, and heterologies generated during DNA
replication and recombination [76,77]. Defects in MMR lead to gen-
omic instability and a strong predisposition to cancer [77]. RPA has
been shown to play important roles in each step of MMR, including
stimulating EXO-catalyzed excision, protecting the ssDNA gap gen-
erated during excision, facilitating the termination of MMR exci-
sion, and repairing/synthesizing DNA [78–83].

RPA and DSB repair
DSBs are highly cytotoxic lesions induced by ionizing radiation and
many other exogenous and endogenous DNA-damaging agents
[84,85]. Since DSBs involve both DNA strands in the double helix,
they are extremely hazardous to cells. A failure to appropriately repair
DSBs leads to severe genomic instability [86,87]. Two major signaling
pathways, non-homologous end joining (NHEJ) and homologous
recombination (HR), are recruited by cells to repair DSBs [88–90].
While HR relies on the homologous duplex to serve as a template for
repair, NHEJ ligates the DSB ends directly without requiring a hom-
ologous DNA template [89,91–94].

The function of RPA in HR has been well studied. HR requires
the generation of ssDNA intermediates which are necessary for
homology searching and pairing [95,96]. This explains why RPA
proteins are required in this process. After a DSB has arisen, the
MRN complex (comprising MRE11, RAD50, and NBS1/Xrs2) and
CtIP initiate a process called DNA end resection. This 5′-end resec-
tion generates 3′ single-strand overhang which is then rapidly recog-
nized and subsequently coated by RPA to remove the secondary
structure and protect the ssDNA tail [88].

However, once DNA end resection has occurred and ssDNA
intermediates appeared, a somewhat dangerous alternative pathway
called microhomology-mediated end joining (MMEJ) may occur

instead of HR. MMEJ creates deletions, translocations, and even
chromosome rearrangements in DNA; thus, it is one of the most
dangerous pathways to repair DSB in DNA [97,98]. It has been
demonstrated that the presence of sufficient amounts of RPA pro-
teins to bind to naked ssDNA is the most important factor for pre-
venting the occurrence of MMEJ [99,100].

In addition to ssDNA, RPA can also bind to HR proteins. The
recombinase RAD51 binds to ssDNA after RPA loading, mediating
the process of pairing and strand exchange. Studies have revealed
that RPA can bind to RAD51 directly and stimulate its strand trans-
fer activity [101,102]. Another important factor involved in HR is
RAD52. While RAD51 binds to ssDNA to promote pairing and
strand exchange processes, RAD52 facilitates strand annealing in
HR [103]. Studies have revealed that RPA can also bind to RAD52,
and the interaction between them is essential for HR [104].

Recently, we found that a human protein associated with cancer,
SLFN11, interacts with RPA1 and is recruited to sites of DNA dam-
age in an RPA1-dependent manner [105]. By destabilizing the RPA–
ssDNA complex, SLFN11 inhibits checkpoint maintenance and HR
repair, and then sensitizes certain cancer cell lines to DNA-damaging
agents [105].

Other SSBs in Eukaryotic Cells

Although RPA is suggested to be the most abundant and thoroughly
studied SSB in eukaryotic cells, other SSBs have also been identified
in the human genome, including hSSB1 and hSSB2 (SOSSB1/2),
both of which contain a single OB domain [106]. We and others
found that SSB1 and SSB2 interact with INTS3 (SOSS-A) and
C9orf80 (SOSS-C) to form the SOSS DNA complex and revealed
the structural basis by which the SOSS1 complex is assembled and
recognizes ssDNA [107–111]. It was demonstrated that the SOSS1/2
complexes are involved in the checkpoint response and DNA repair
regulation in response to DSBs [107,109,110,112].

Other than the nuclear SSBs, mitochondrial SSBs (mtSSBs) have
also been reported, which are conserved from yeast to human.
mtSSBs bind to ssDNA and stabilize the single-stranded regions of
mtDNA within its displacement loops [113].

Summary and Perspective

Mounting evidence indicates that RPA interacts with a large and
growing number of proteins or protein complexes to regulate DNA
metabolism. Future studies are needed to understand the molecular
mechanisms that allow RPA to participate in specific DNA meta-
bolic pathways.
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