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Abstract

Deoxyribonucleic acid double-strand breaks (DSBs) are cytotoxic lesions that must be repaired

either through homologous recombination (HR) or non-homologous end-joining (NHEJ) path-

ways. DSB repair is critical for genome integrity, cellular homeostasis and also constitutes the bio-

logical foundation for radiotherapy and the majority of chemotherapy. The choice between HR

and NHEJ is a complex yet not completely understood process that will entail more future efforts.

Herein we review our current understandings about how the choice is made over an antagonizing

balance between p53-binding protein 1 and breast cancer 1 in the context of cell cycle stages,

downstream effects, and distinct chromosomal histone marks. These exciting areas of research

will surely bring more mechanistic insights about DSB repair and be utilized in the clinical

settings.
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Introduction

Deoxyribonucleic acid (DNA) double-strand breaks (DSBs), the
most harmful type of DNA lesions, are generated in response to
extrinsic ionizing radiation (IR) or intrinsically to free radicals dur-
ing cellular metabolism or DNA abducts/abnormal DNA structures
during DNA replication [1,2]. They also occur inherently during
many physiological processes such as meiosis I [3], mating-type
switching in yeasts [4], V(D)J recombination, and immunoglobulin
class-switching recombination (CSR) in B-lymphocytes [5]. We will
focus on DSB repair in mammalian cells.

The repair of DSBs is channeled into two pathways, non-
homologous end joining (NHEJ) and homologous recombination
(HR). During NHEJ, the Ku70/80 heterodimers bind to DNA ends
and recruit the DNA protein kinase (DNA-PK) [6]. Once bound,
DNA-PK activates its own catalytic subunit (DNA-PKcs) and further
enlists the endonuclease Artemis (also known as SNM1c). At a sub-
set of DSBs, Artemis removes excess single-strand DNA (ssDNA),
and generates a substrate that will be ligated by DNA ligase IV.
NHEJ involves blunt-end ligation independent of sequence

homology by the canonical DNA-PKcs/Ku70/80 complex. During
the cell cycle, NHEJ occurs predominantly in G0/G1 and G2 [7,8]. In
fact, NHEJ is the only DSB repair pathway in the G0 and G1 phases.
In the review, we will focus on the resection-mediated pathway of
NHEJ which represents the slow component of NHEJ.

HR functions in the S and G2 phases and plays a major role in
the repair of replication-associated DSBs. The DSB ends are resected
to expose 3′ ssDNA tails, primarily by the MRE11-RAD50-NBS1
(MRN) complex [9]. Then, the adjacent sister chromatid will be used
as a template, and the ssDNA will invade the template mediated by
the recombinase Rad51, displacing an intact strand to form a D-
loop. D-loop extension is followed by branch migration to produce
double-Holliday junctions, the resolvation of which completes the
repair cycle. During HR, the ability of the Ku70/80 complex to bind
DNA ends is restricted by the MRN complex. Moreover, it could
also be displaced by the E3 ligase RNF138, also called Nemo-like
kinase (NLK)-associated ring finger protein (NARF) [10].

In comparison, NHEJ is fast [11], yet mutagenic, often accom-
panied by short deletions and base changes. HR often requires
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error-prone polymerases, yet is typically viewed as error-free. In
reality, the fidelity of HR is not as high as DNA replication, and
may result in broadly distributed base substitutions [12].

The early divergent step between the two pathways is end resec-
tion, and is regulated by many factors. It is first modulated by cell cycle
phases: the cyclin-dependent kinase (CDK) phosphorylates the exo-
nuclease Exo1 and promotes end resection, while attenuation of Exo1
phosphorylation increases NHEJ [13]. Then, it is mediated by post-
translational modifications. Breast cancer 1 (BRCA1), in complex with
MRN, plays an instrumental role in promoting end resection, and is
poly adenosine diphosphate (ADP)-ribosylated by PARP1 [14,15].
Third, it is regulated by accessory factors, where the balance between
BRCA1 and p53-binding protein 1 (53BP1) comes into play.

53BP1 Dictates the NHEJ Pathway

53BP1 is a large protein with 28 N-terminal Ser-Gln or Thr-Gln
(SQ/TQ) sites, middle tandem Tudor domains, a ubiquitination-
dependent recruitment (UDR) motif and the C-terminal BRCA1
carboxyl-terminal (BRCT) repeats [16] (Fig. 1A). As its name sug-
gests, it was first discovered as a binding protein of the tumor sup-
pressor protein p53 [17]. Two decades later, although it is still
enigmatic why 53BP1 interacts with p53, its central role in DSB
repair has become clear. 53BP1 promotes accurate NHEJ and
restricts resection. Nevertheless, NHEJ occurs well in cells lacking
53BP1.

The SQ/TQ sites are partially phosphorylated by the ataxia-
telangiectasia mutated (ATM) kinase, the AT and Rad3-related
kinase (ATR), and/or DNA-PKcs [18]. ATM-dependent phosphoryl-
ation of 53BP1 is essential for the interaction of 53BP1 with down-
stream targets, including RAP1-interacting factor 1 (RIF1) [19] and
PAX transactivation domain-interacting protein (PTIP or PAXIP1)
[20] (Fig. 2), although 53BP1-PTIP interaction is not critical for
PTIP recruitment to DSB sites in mammalian cells [20].

The antagonist relationship between 53BP1 and BRCA1 is mani-
fested by the following evidence: first, 53BP1 and BRCA1 occupy
distinct DSB sites [21]; second, BRCA1 attenuates RIF1 accumula-
tion in DSBs during the S phase [22]. The chromatin removal of
53BP1 is not dependent on the E3 ligase activity of BRCA1 [23],
but rather, dependent on the interaction of BRCA1 with CtBP-
interacting protein (CtIP) [23,24]. The BRCT domain of BRCA1
recruits the E3 ligase ubiquitin-like, with plant homeodomain
(PHD) and RING finger domain 1 (UHRF1), which mediates K63-
polyubiquitination of RIF1 and subsequent dissociation of Rif1
from 53BP1 [25]. Thus, BRCA1-CtIP and BRCA1-UHRF1 path-
ways antagonize 53BP1-Rif1 in S–G2 in favor of HR, and 53BP1-
Rif1 attenuates BRCA1 in G1. We will expand the 53BP1-dictated
NHEJ pathway below.

The 53BP1-Rif1-Rev7/Mad2L2 axis

The Rif1 protein does not contain any known protein motifs, and
was first identified in yeasts to modulate telomere homeostasis [26].
The human Rif1 is not involved in telomeres, but rather interacts
with 53BP1 to block DSB resection in G1 [19]. ATM-dependent
phosphorylation of 53BP1 at its N-terminal SQ/TQ sites recruits
RIF1 to damaged chromatin foci [22–24,27,28]. In a reporter cell
line, knockdown of 53BP1, Rif1, or both results in NHEJ defects at
comparable levels, suggesting that 53BP1 and Rif1 act in the same
pathway [22]. In the adaptive immune response, 53BP1 is essential
for CSR. During CSR, knockdown of Rif1 leads to hyper-resection

of DSBs within the immunoglobulin heavy chain locus [22,28]. In
Rif1-deficient mouse cells, IR sensitivity is comparable to cells defi-
cient in both 53BP1 and Rif1 [22,23]. These data suggest that Rif1
and 53BP1 act concertedly in a common pathway.

Proteins downstream of Rif1 have been under hot pursuit, until
earlier in 2015 two groups independently identified Rev7/Mad2L2
[29–31], a protein familiar to the field of DSB repair. Rev7 was first
identified to be involved in ultraviolet sensitivity in yeasts [32]. It is a
component of DNA polymerase ζ (zeta), regulating DNA translesion
synthesis [33]. It re-emerged as a homolog of yeast mitotic arrest-
deficient (Mad2) protein, and was named Mad2L2/Mad2B [34]. As
Mad2 is a sensor of the mitotic spindle assembly checkpoint (SAC),
Mad2L2 modulates the ubiquitin E3 ligase activity of anaphase-
promoting complex/cyclosome (APC/C) by sequestering its co-
activator, Cdh1, thus preventing premature APC/C activation [35].
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Figure 1. Diagrams showing domain structures of 53BP1, PTIP, and SNM1c/

Artemis (A) Schema of the 53BP1 protein structure, showing the 28 SQ/TQ

sites at its N-terminus, middle tandem Tudor domains and a UDR motif and

the C-terminal BRCT repeats. (B) Schema of the PTIP protein structure, show-

ing the multiple BRCT domains. (C) Schema of the SNM1c/Artemis protein

structure, showing the N-terminal metallo-β-lactamase (MBL) domain, mid-

dle β-CASP domain and the C-terminal domain involved in a radiosensitive

severe combined immunodeficiency disorder (SCID).
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Figure 2. DSB repair pathway choice involves a balance between HR and

NHEJ Under both physiological (CSR) and pathological (telomere fusion)

conditions, the 53BP1-Rif1-Rev7/Mad2L2 axis operates to generate blunt

ends, thus promoting NHEJ and inhibiting HR by BRCA1. The 53BP1-PTIP-

SNM1c/Artemis axis only functions under pathological conditions to pro-

mote NHEJ.
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Mad2L2 is also involved in the formation of a functional spindle and
ensures correct chromosome segregation [36]. During DSB repair
pathway choice, Rev7/Mad2L2 inhibits 5′ DNA end resection
and accumulates at IR-induced DSBs under the control of 53BP1
and Rif1, thus promoting NHEJ-dependent events, such as telo-
mere fusion and CSR [29–31]. It remains to be elucidated why
Rev7/Mad2L2 does not complex with 53BP1 or Rif1 directly,
although evidence suggests that chromatin contexts might play a
role [29].

It has also been noted that the function of 53BP1 is not totally
dependent on Rif1. While loss of 53BP1 rescued the lethal pheno-
type of BRCA1 null, loss of Rif1 only partially rescued HR defects
in BRCA1 defective cells [23,24,27].

The 53BP1-PTIP-SNM1c/Artemis axis

PTIP contains BRCT repeats (Fig. 1B) that interact directly with
ATM-dependent phosphorylation of 53BP1 at S25 [20,37].
Independent of its role in DNA repair, PTIP also mediates transcrip-
tion together with the mixed-lineage leukemia 3 (MLL3)-MLL4
H3K4 methyltransferase [37]. Similar to 53BP1 and RIF1, PTIP
blocks DSB end resection, and is involved in telomere fusion, but is
not used for CSR. Therefore, PTIP could be considered as a context-
specific effector [16].

Downstream of PTIP is the nuclease, Artemis/SNM1c [38].
Artemis belongs to the MBL family of DNA nuclease [39] (Fig. 1C).
It possesses both endonuclease activities at DNA hairpins and at 5′
and 3′-DNA overhangs of duplex DNA in a DNA-PKcs-dependent
manner, and also 5′-exonuclease activities on ssDNA and 5′-over-
hangs that is DNA-PKcs-independent [39]. A hotly debated question
has been whether Artemis contains one single active site for both its
exonucleolytic and endonucleolytic activities, which was answered
recently by Li et al. [40], showing that not only the 5′-exonuclease
and the endonuclease activities were co-purified but also a putative
active site mutation-H115A markedly reduced both nuclease activ-
ities. A unified view of Artemis nuclease activity has also been pro-
posed when it was discovered that Artemis resects into blunt DNA
ends, the effectiveness of which depends on the AT content of the
DNA ends and the Ku proteins [41].

PTIP interacts with Artemis through its second BRCT domain,
while Artemis interacts with PTIP through damage-dependent phos-
phorylation of six S/T sites at the very C-terminus of Artemis, with
T656 as the most critical residue [38]. Artemis localizes to DNA-
damage sites, and loss of Artemis increased Rad51 and RPA foci in
BRCA1-deficient cells [38]. In breast or ovarian cancer patients with
BRCA1/2 mutations, PARP inhibitors (PARPis) are widely used to
induce synthetic lethality of tumor cells in the absence of BRCA1-
mediated HR [42,43]. Loss of Artemis or using the nuclease-inactive
mutant, H35AD37N, of Artemis leads to PARPi resistance [38].
Taken together, Artemis interacts with PTIP in a damage-dependent
manner, and trims DNA ends to promote NHEJ depending on its
nuclease activity.

DSB Repair in the Context of Chromatin

Environment

DSB repair occurs in the context of chromatins, which are DNA
structures surrounded by histones. Therefore, the chromatin associ-
ation of 53BP1 antagonizes against BRCA1, leading to distinct sub-
sequent pathway choice. The importance of histone modifications is
exemplified by the very first step of DNA-damage signaling cascade,

in which ATM phosphorylates the histone H2A variant H2A.X (or
γH2AX), ensued by subsequent recruitment of DNA-damage effec-
tors. The structure of 53BP1 also signifies the histone code: the
Tudor domain binds histone H4K20me2, and the UDR motif inter-
acts with histone H2AK15ub [16]. Several histone marks and other
chromatin factors will be discussed below.

H4K20me vs. H4K16ac

The Tudor domain of 53BP1 binds to H4K20me and H4K20me2,
which is essential for the recruitment of 53BP1 to DSB foci [44].
H4K20me2 is directly affected by acetylation of adjoining H4K16.
The lysine acetyltransferase KAT5 (or TIP60) induces DNA dam-
age–dependent H4K16ac, disrupting binding of the 53BP1 Tudor
domain with the H4 tail [45]. The H4K16 acetyltransferase males
absent on the first protein is phosphorylated by ATM at T392 and
modulates 53BP1 function (MOF) [46]. However, the histone deace-
tylases HDAC1 and HDAC2 deacetylate H4K16 following DSB
induction, thus promoting the association of 53BP1 with H4K20me
(1/2) [47]. Therefore, the crosstalk of histone acetylation and methy-
lation determines the association of 53BP1 with methylated
chromatins.

In addition, the Polycomb protein L3MBTL1 and the demethy-
lase Jumonji domain-containing protein 2A (JMJD2A/KDM4A)
compete against 53BP1 for methylated chromatin binding with their
H4K20me2-binding domains [48,49]. In the absence of DNA
damages, they localize to H4K20me2. Upon DNA damages, RING
finger 8 (RNF8) and RNF168 ubiquitinate both proteins, resulting
in dissociation of L3MBTL1 from the chromatin and proteasome
degradation of JMJD2A [50,51].

Moreover, a local enhancement of H4K20 methylation by the
histone methyltransferases SET domain-containing protein 8
(SETD8/PRSET7) and multiple myeloma SET domain-containing
protein (MMSET/WHSC1) has also been proposed [52–54].
However, it remains elusive whether H4K20 methylation formed in
the pathway pertains to DNA damage.

H2AK15ub

The UDR motif in the vicinity of the Tudor domain recognizes DNA
damage-induced ubiquitination of H2A by the E3 ligase RNF168
[55,56], which is necessary for the DNA damage-induced focus for-
mation of 53BP1. Indeed, point mutations in the UDR motif abolish
53BP1 focus formation upon DNA damage and consequently the
association of H2AK15ub with 53BP1 [23], but not that of
H4K20me2. The DNA damage-specific combination of histone
marks–H4K20me2 plus H2AK15ub–ensures the focus formation of
53BP1 at DSBs, and 53BP1 only binds to mononucleosomes that
contain both histone marks. The dual specificity is sufficient and
necessary for chromatin recruitment of 53BP1.

A negative regulator of H2AK15ub binding with 53BP1 is
RNF169, another E3 ligase [57,58]. It has been proposed that
RNF169 accumulates on damaged chromatins and competes against
53BP1 for H2AK15ub, but it remains enigmatic as how the balance
is tipped upon DNA damage.

H3K36me3

H3K36me3 associates with transcription elongation and accumu-
lates on actively transcribed genes [59]. H3K36me3 channels DSBs
into the HR pathway at both heterochromatins (details discussed in
the next section) and actively transcribing regions. Contrary to the
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histone marks aforementioned, H3K36me3 is not induced by DNA
damages, but rather, pre-established [60]. Using three experimental
systems, I-SceI-, radiation-, and AsiSI-induced DSBs, three groups
independently identified that active transcription marked by
H3K36me3 and the main H3K36me3 methyltransferase SETD2 are
necessary for HR repair [60–62].

H3K36me2, which is present on around 40% of nucleosomes,
promotes NHEJ [63]. Besides the core histones, the linker histone 1
(H1) was identified to be the key target of RNF8 and UBC13 (or
UBE2N), and K63-ubiquitinated H1 is read by RNF168, the recruit-
ment of which induces H2A ubiquitination [64]. Therefore, more
efforts are needed to generate a more unified view of the histone
code that governs repair pathway choice.

Other chromatin cues: nuclear positions, nucleolar

DNA and heterochromatins

DNA is distributed to distinct nuclear compartments: the vicinity of
nuclear membranes, nuclear pores, lamina-associated, or nuclear
interior. Although DNA damages occur throughout the nucleus, the
fate of the damages is far from alike. Recent evidence suggests that
DSBs at the nuclear pores or nuclear interior are more permissive
for HR, while DSBs at the nuclear membranes are repaired by alter-
native end joining [65]. Therefore, nuclear compartmentalization
also contributes to pathway choice.

Another specialized nuclear structure is the nucleolus, which har-
bors ribosomal DNA (rDNA) arrays and is the site of ribosome bio-
genesis. The nucleolar interior contains actively transcribing rDNA
repeats, while the nucleolar periphery is packed with heterochroma-
tins. DSBs introduced specifically to rDNA result in ATM-
dependent inhibition of rDNA transcription, coupled with outward
movement of rDNA to the periphery, resulting in easier access to the
repair factors [66].

DSBs occurring in heterochromatin regions are repaired specific-
ally by an HR pathway involving ATM, Artemis, RNF8, 53BP1,
and RNF168 [67,68]. It has been proposed that NHEJ failures in
these regions might be caused by the chromatin compaction in the
heterochromatins, thus resulting in the subsequent heterochromatin
de-condensation and HR factor recruitment [69]. Mechanistically,
DSB leads to dissociation of heterochromatin protein 1 (HP1) from
the heterochromatin mark H3K9me3, which enlists KAT5/TIP60
binding via its chromodomain, resulting in nucleosome resection
and HR repair [70].

Open Questions and Translational Perspective

Many questions remain enigmatic in the field. To begin with, how is
53BP1 fine-tuned? Recently, ubiquitin-conjugating enzyme H7
(UbcH7/Ube2L3) was identified to regulate proteasome-dependent
degradation of 53BP1 during both the steady state and replication
stress [71]. UbcH7 depletion stabilizes 53BP1, and sensitizes the cells
to DNA damages due to the error-prone NHEJ pathway [71]. Thus,
UbcH7 could be utilized to enhance radiotherapy or chemotherapy
by stabilizing 53BP1. It also makes one wonder: what is the E3 lig-
ase for 53BP1? Next, can we biochemically reconstitute damaged
chromatins? Third, are there other factors acting in concert with
BRCA1 to antagonize 53BP1?

The vast majority (around 85%) of IR- or drug-induced DSBs
are repaired by NHEJ, even in G2 [8,72]. Thus, the DSB repair path-
way choice may entail translational perspectives. For instance, when
chemotherapies are conducted using PARPis in breast or ovarian

cancer patients with BRCA1/2 mutations, one needs to take into
consideration that BRCA1-/- 53BP1-/-, BRCA1-/-Rev7-/-, BRCA1-/-

Artemis-/- cells will render PARPis inefficient [29,38].
Another devastating human hereditary disease, Cockayne syn-

drome (CS), is mainly caused by the ERCC6 gene which encodes
Cockayne syndrome group B protein (CSB). CSB was discovered to
localize to DSBs. Loss of CSB or a CS-associated CSB mutation
impairs BRCA1 recruitment, but promotes 53BP1-Rif1 foci [73].
Therefore, targeting 53BP1 might raise a new clinical venue for the
CS patients.
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