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Abstract

A number of computational techniques have been proposed to expedite the process of allosteric
ligand binding site identification in inherently flexible and hence challenging drug targets. Some
of these techniques have been instrumental in the discovery of allosteric ligand binding sites on Ras
proteins, a group of elusive anticancer drug targets. This review provides an overview of these tech-
niques and their application to Ras proteins. A summary of molecular docking and binding site iden-
tification is provided first, followed by a more detailed discussion of two specific techniques for binding
site identification in ensembles of Ras conformations generated by molecular simulations.
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Introduction

Ras proteins are guanosine triphosphate (GTP) binding enzymes that
regulate a number of key signaling pathways involved in the control of
cell division, proliferation, and development [1,2]. Activating somatic
mutations in Ras proteins occur in 15%-25% of all human tumors
[3]. There are three major Ras proteins in humans: N-, H-, and
K-Ras. These proteins share essentially the same catalytic machinery
yet differ in their ability to drive cancer formation (e.g. [4]). K-Ras mu-
tations represent 85% of all oncogenic Ras mutations and are fre-
quently found in lung, colorectal, and pancreatic carcinomas [5-8].
N-Ras mutations are common in melanomas, hepatocellular carcin-
omas, and hematologic malignancies [9-11]. Although less frequent,
H-Ras mutations are found in bladder, kidney, and thyroid carcin-
omas [3,12,13]. Therefore, Ras proteins remain one of the most cru-
cial anticancer drug targets [14].

The nucleotide-binding site would have been a logical target for
structure-based ligand design for Ras. However, it is conserved in
other families of GTPases and therefore targeting this site would likely
lead to problems of selectivity and toxicity. Although there are on-
going efforts toward developing guanosine diphosphate (GDP) ana-
logs for covalent binding to the G12C mutant of K-Ras [15,16],
such an inhibitor would not be applicable to the vast majority of

oncogenic Ras mutations. Even if selective inhibitors of the active
site were identified, the high intracellular concentrations of GTP and
GDP and their high (picomolar) affinity for Ras would make competi-
tive inhibition impractical. Therefore, alternative strategies are needed
to abrogate abnormal Ras function.

Over the years, a number of different approaches have been used to
try to find ligands that inhibit Ras function. These include indirect
ways of perturbing membrane binding of Ras, and blocking the activity
of Ras activators and downstream effectors. Examples of the former
include development of farnesyltransferase inhibitors (FTIs) [17-20]
and farnesyl analogs [21-24], as well as compounds that modulate
plasma membrane lipid distribution [25-27], induce cytoplasmic ac-
cumulation of inactive Ras [28,29] and inhibit trafficking proteins re-
sponsible for localizing Ras on membranes such as PDES [30,31]. The
goal is to somehow disrupt Ras membrane binding that is required for
its biological activity. While the impact of the latter four classes of
compounds is yet to be determined, FTIs turn out to be a major disap-
pointment [32]. This is because K- and N-Ras can be alternately pre-
nylated by geranyl-geranyl transferase in cells treated with an FTI[33],
and combination therapy with multiple prenylation inhibitors leads to
severe toxicity [19]. Similarly, inhibition of Raf, a downstream effector
of Ras, leads to a paradoxical activation of Ras [34,35]; nonetheless
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efforts are still ongoing to inhibit other Mek- and Erk-related path-
ways [36,37]. It remains unclear as to which of these approaches, if
any, will turn out to be most successful in preventing abnormal Ras
function. We favor approaches that aim at directly inhibiting oncogen-
ic mutant Ras.

Recent work from our group [38-41] and that of others [42-53]
demonstrated that Ras is an allosteric enzyme. In very simple terms,
allostery is defined as an observed effect on a distant region of a pro-
tein, such as its active site, as a result of perturbation of another region
upon ligand binding. Several earlier studies suggested an allosteric
communication between the Ras active site and its membrane-facing
surface and existence of multiple conformational substates [38-56].
Together, these observations opened up new possibilities of inhibiting
Ras activity (see [57,58] for recent reviews) and, upon further compu-
tational studies [38,39], provided the initial clues into the potential
druggability of Ras [59]. This was followed by the prediction of
four previously uncharacterized allosteric ligand binding sites [38],
some which subsequently confirmed by the discovery of a number of
allosteric Ras binders [42,44-47] (discussed in detail in the ‘Discovery
and Validation of Four Allosteric Binding Sites on Ras’ section). These
ligands either interfere with GDP-GTP exchange [42,46,47], stabilize
the inactive GTP-bound conformation of Ras (state 1) [44,45], or pre-
vent Ras—effector interaction [46] (Fig. 1). It is important to note here
that most of these ligands were discovered through in silico screening
of ligand libraries [46] or via nuclear magnetic resonance spectroscopy
(NMR )-based screening of molecular fragments [42,44,45].

The primary focus of this review is on the role of computational
approaches to aid in efforts toward direct inhibition of Ras. We
begin with a general overview of structure-based computer-aided
drug discovery. We then discuss the four allosteric ligand binding
sites obtained from computational and experimental studies, followed
by a comparatively more detailed discussion of two recently developed
computational methods that are likely to play a key role in ongoing
searches for novel allosteric ligand binding sites on the soluble and
membrane-bound Ras and related drug targets.

Overview of Structure-based Computer-aided
Drug Discovery

Given the involvement of mutant Ras in almost every major cancer
type, the need for discovering drugs that abrogate abnormal Ras

\' Ras-GTP State-1

®
Ras-GTP State-2
I
Effector binding

Figure 1. Modulation of the GTPase cycle and effector interaction of Ras by
weak allosteric inhibitors that have been discovered in the past several
years The catalytic cycle of Ras (left) and the two substates of GTP-bound
Ras (right) are highlighted in cartoon diagram. The inverted T sign indicates
the site of action of different ligands. GEF, guanine nucleotide exchange
factor; GAP, G-protein activating protein.

signaling cannot be overstated. Drug discovery, however, is a very
complex and expensive process that takes years and costs billions of
dollars [60]. Structure-based computer-aided drug design (CADD) ap-
proaches can expedite the process and reduce cost [61]. As a result,
high-throughput virtual screening (HTVS) of ligand libraries has be-
come an integral part of drug design programs in both industry and
academic laboratories [62,63].

A typical modern CADD workflow is shown in Fig. 2. One of the
key starting points for CADD is a well-characterized target whose
atomic structure has been determined to a sufficiently high resolution
[64]. Ras meets this condition with more than 150 high resolution
crystal structures available in the protein data bank. Also of key im-
portance is knowledge about the potential drug binding site or pock-
et(s) on the surface of the target [65,66]. In most cases, the target site
for docking is the functionally most responsive orthosteric site, which,
for example, can be the active site of an enzyme [67] or the agonist/
antagonist-binding site of a G-protein-coupled receptor (GPCR). In
some cases, active site inhibition is either ineffective or leads to toxicity
if the site is highly conserved among related proteins. For such targets,
allosteric inhibition is the preferred (or only) option to achieve en-
hanced selectivity or reduced toxicity. Moreover, some of the most ef-
fective drugs on the market are allosteric inhibitors (e.g. MK-2206
[68]). The first crucial step for a successful structure-based discovery
of an allosteric inhibitor is the identification of an allosteric ligand
binding site [69]. We will return to this issue in subsequent sections.

After target selection and binding site identification, one can con-
duct HTVS of ligand libraries against the target site. There are a num-
ber of knowledge-based and/or physics-based algorithms to perform
HTVS using various energy functions for docking and scoring.
Many excellent recent reviews have discussed current HTVS techni-
ques as well as their advantages, limitations and potential for improve-
ments [61,63,70,71]. In short, HTVS requires a careful selection of a
small-molecule ligand library [72], which involves among other things
setting up criteria for molecular size, solubility, and cell permeability
[73-75]. There is a wealth of freely available data on small-molecule
ligands in public databases such as ZINC [76] and PubChem [77].
These depositories of large numbers of drug-like small molecules
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Figure 2. Overview of a typical ensemble-based computer-aided drug design
strategy Shown here is a simplified workflow of a structure-based
computer-aided drug design process involving target selection, binding site
identification, high-throughput virtual screening of ligand libraries,
experimental validation, and optimization for potency and selectivity.
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provide ready-to-use, downloadable files of ligand libraries [63,77].
A focused library biased toward a given set of compounds can also
be generated based on known high affinity binders via similarity
searches and knowledge-based culling [63]. Once the desired ligand
library is chosen, HTVS can be conducted using a number of programs
such as GLIDE, DOCK, and Autodock [78-88]. The output of these
algorithms includes docking scores (typically an estimate of the bind-
ing free energy) and the structure of the predicted target-ligand com-
plex. The final result is a list of predicted hits ranked by binding free
energy score, ligand pose, or both. It is often useful to obtain a consen-
sus score from multiple docking runs and different programs to reduce
false positives that usually arise from limitations in the scoring func-
tions [89,90]. The predicted hits should be validated by experimental
methods before being subjected to a series of optimization steps that
are required to generate a lead compound with the desired potency
and selectivity (Fig. 2).

Discovery and Validation of Four Allosteric
Binding Sites on Ras

As noted in the first section, a number of computational [38,39,54,55]
and experimental [42-53] studies suggested that Ras is an allosteric
enzyme. This conceptual advance led to the prediction of four allo-
steric ligand binding sites based on different computational ap-
proaches, primarily ensemble-based blind docking and FTMap
[38,48]. The ensemble-based approach accounts for Ras flexibility
and conformational transitions using molecular dynamics (MD) sam-
pling of configurational space, followed by blind docking of drug-like
molecules on the entire surface of each receptor conformation to
search for allosteric binding sites. FTMap uses a continuum approach
for docking of molecular fragments on the surface of a rigid receptor
[91]. The four allosteric ligand binding sites predicted by these meth-
ods were subsequently confirmed by NMR or X-ray crystal structures
of Ras in complex with small-molecule ligands [42-47]. Table 1 and
Fig. 3 summarize the location of these pockets and the ligands that
have been determined or predicted to bind to them. Because all of
these sites have been discussed in detail in previous reports [39,42—
47], we provide only a brief summary of their key features that will fa-
cilitate future drug design.

Three of the four pockets (p1, p2, and p4) are located near the
functionally critical switch regions. Since the switch regions interact
with Ras activators and effectors, ligands that target any of these
pockets can be expected to directly or allosterically modulate binding
to proteins either upstream or downstream of Ras. This is indeed the
case [39,42,44-47]. As indicated in Table 1, residues on switch 2 and
the B1-3 strands were shown to be involved in stabilizing ligands
bound to p1 [42,46,47], and p1 is the target site for the majority of
NMR and X-ray structures of Ras-ligand complexes solved to date.
These include 4,6-dichloro-2-methyl-3-aminoethyl-indole (DCAI)
[42], the Kobe-family ligands [46], and other ligands with specific che-
motypes including indoles, phenols, sulfonamides, and their analogs

[47]. Crystal structures of ligands bound to p2 (broadly defined)
that form a covalent bond to the Cys of a G12C mutant Ras have
been solved recently [43]. These ligands span either of two subpockets
lying toward switch 2 or helix 3. Evidence from NMR and MD studies
suggest that p4 is a viable drug target in Ras structures with open
switch 1 conformation [39,45]. Finally, pocket p3, which has been
shown to be targeted by metal-cyclens, is unique in terms of its distant
location from the active site as it lies near the C-terminal end of the
protein [44,45]. Therefore, it is likely to be more significantly affected
by membrane binding.

Recent Methodological Advances for Allosteric
Binding Site Identification

Over the years, a number of useful computational techniques have
been developed to expedite ligand binding site identification in the
structure of target proteins [91-94], including SiteMap [95],
MDpocket [96], FTMap [91], and others [97-99]. Here, we focus
on two techniques that take advantage of MD simulation for efficient
incorporation of protein motion into the site identification process:

C-terminus

N-terminus

Figure 3. The location of allosteric ligand binding sites on Ras Four ligand
binding sites are shown in different colors and labeled as p1 (light blue), p2
(green), p3 (yellow), and p4 (pink). The residues that define these pockets
are listed in [92]. Note that in this illustration we used a single structure of
G12D K-Ras in which some of the pockets are not fully open. As discussed in
the main text, opening of some pockets in Ras requires relaxing the protein
through MD simulation.

Table 1. Binding sites/pockets of Ras characterized by experimental and computational studies

Binding site Region Ligand

pl B1-3, switch 2

p2 Loop2, switch 2, and helix 3
p3 Loop7 and helix 5

p4 switch 1

DCAI [42], Kobe ligands [46], indole, phenol, sulfonamide-containing ligands [47]
Compounds specific for G12C Ras [43]

MZ>*-BPA [45], M**-cyclen [44]

M?*-BPA [45], andrographolide derivatives [39]
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ligand binding specificity analysis (LIBSA) [94] and probe-based MD
(pMD) [92].

Conformational ensembles and MD simulations

A number of excellent recent reviews have discussed the importance of
incorporating structural flexibility to increase the success rate of
CADD [100-102]. One of the most widely used methods to achieve
this is MD simulation. When the ligand binding site is already
known, MD can be used to generate ensembles of receptor conforma-
tions against which site-directed docking can be performed via the
‘relaxed complex’ scheme [103]. This paradigm of coupling protein
dynamics to HTVS through MD is being widely used [104,105]. A
relatively new application of MD in drug discovery is for allosteric
binding site identification [106]. Because MD is highly effective in
sampling conformations that are not readily captured by experimental
methods, it has the potential to reveal pockets hidden in an averaged
X-ray structure [92].

LIBSA

The LIBSA protocol (see Fig. 4) has been developed in our laboratory
with the goal of quantifying the relative binding preference of a ligand
to a given target site versus all other sites [94]. It was validated on a
number of different systems with known ligand binding sites, includ-
ing kinases, G-proteins, and a GPCR. LIBSA relies on MD to generate
conformational ensembles for the target protein, followed by common
techniques such as RMSD-based clustering [107] to generate represen-
tative structures for docking (Fig. 4). A drug-like molecular probe is
then docked onto the entire surface of the protein using available
docking programs such as Autodock [83]. Three simple tools were de-
veloped to remove docking noise and compute binding preference
based on the idea that binding consistency (rather than just affinity)
can be used as a metric for identifying hits. The first tool, termed af-
finity filtering, uses the distribution of docking scores to reduce noise
by assigning more weight to the high frequency high affinity poses. In
this procedure, the inherently large error in scoring functions can be
accounted for by including ligand poses whose predicted affinity lies
within a certain range of the high frequency poses. The second filter,
termed high pass filter, reduces noise by applying a digital filter on the

Generate conformational
ensembles by MD

Probe surface of target with drug-
like molecules (blind docking)

Generate contact (or affinity)
spectra and reduce noise

Calculate signal-to-noise ratio

Figure 4. Workflow of LIBSA LIBSA enables determination of ligand binding
preferences to allosteric sites on an ensemble of receptor conformations. The
protocol involves optional preprocessing of MD-generated protein conformers
based on clustering or other methods, followed by docking of a drug-like
molecule on the entire surface of the target, quantification of contact (and/or
affinity) frequency distributions, and determination of SNR for each site of
interest.

distribution of contacts involving the probe molecule and residues of
the receptor. Following the application of one or both of these filters, a
signal-to-noise ratio (SNR) is used to quantify binding preference. The
current implementation of the SNR essentially refers to the sum of
contacts that the probe molecule makes with a set of residues within
a predetermined binding patch divided by the sum of all other probe—
residue contacts. Each of these three tools can be applied on data
generated by any method that can scan the surface of a target with a
drug-like molecular probe.

LIBSA was applied on Ras in a couple of different ways. First, as an
additional test of robustness, the method was used to re-identify bind-
ing sites of ligands that were solved in complex with Ras. Then, it was
applied on MD-derived ensembles of Ras structures in solution to
rank the binding preference of andrographolide derivatives for differ-
ent pockets. These ligands were found to exhibit distinct pocket pre-
ferences despite their chemical/structural similarity [94].

pMD

First proposed by Seco et al. [108], pMD is a mixed solvent MD ap-
proach for the identification of novel binding pockets (e.g. [108,109]).
This method incorporates protein motion directly, thus allowing for
effects of conformational selection or induced fit to be captured during
the pocket identification process [109,110]. In pMD, MD simulation
is conducted in the presence of probe molecules as part of the solvent
environment (typically a 20:1 water-to-probe ratio) [92,108,109,111-
114]. The most common probes include ethanol, isopropanol, isobu-
tanol, acetone, acetaldehyde, and benzene [91]. These molecules re-
present some of the most common fragments found in marketed
drugs [109]. The average distribution of the probe occupancy is
used to compute the druggability index of various sites based on
grid binding free energies [92]. The method can also be used to esti-
mate the maximal binding affinity (Ky) per site, although this must
be used with caution as the results can be sensitive to the cutoff
used to group interaction spots (see [92] for more details). Probe-based
MD has been tested on a number of systems [108,109,111-114], in-
cluding the isolated catalytic domain of K-Ras in solution [92] where it
was able to identify all four allosteric pockets described in the ‘Discov-
ery and Validation of Four Allosteric Binding Sites on Ras’ section
(Fig. 5). In addition, binding sites that may be involved in protein—
protein or protein-membrane interaction were predicted. These add-
itional sites may be useful for engineering lead compounds to augment
binding to the primary sites p1-p4.

As mentioned earlier, membrane binding is essential for the bio-
logical function of Ras [115,116], and several studies suggested that
there exist differences in dynamics between Ras in solution and
when bound to membrane [54-56,59,117,118]. Therefore, it is im-
portant to examine if the allosteric ligand binding sites characterized
in solution might still be accessible to ligands when Ras is membrane
bound. In addition, it is possible that new druggable sites might open
during fluctuations of Ras in membrane. However, until recently, we
lacked the necessary tools to computationally probe these issues.
While pMD can be used in principle, the typically apolar probe mole-
cules tend to partition into the membrane and affect its structure
and dynamics. We have developed an approach referred to as pMD-
membrane that overcomes this limitation [118]. The method entails
modifying the van der Waals interaction potentials between selected
atoms of the probes and the lipid molecules without affecting the
structural properties of the bilayer and the target protein. Application
of pMD-membrane to G12D K-Ras in two different modes of mem-
brane binding revealed that, in one of these, only three of the four
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Figure 5. Allosteric ligand binding sites on Ras identified by pMD Four ligand
binding sites are shown by black arrows and labeled as p1, p2, p3, and p4. All
four allosteric pockets are observed by pMD-solution (green solid spheres)
while a new site emerges and p1 disappears in pMD-membrane (blue solid
spheres). Lobe 1 is in pink and lobe 2 in cyan. A portion of the bilayer is
shown in ice blue lines. Hypervariable region is shown in yellow.

pockets identified in solution are still visible; instead a new putative
pocket emerged (Fig. 5). This suggests that membrane binding indeed
affects pocket accessibility (Fig. 5). Similarly, we found differences in
the accessibility of sites to probe molecules when we compared G12D
and G13D mutations [118]. These examples demonstrate that pMD-
membrane is a promising new technique that has the potential to
quantify differences in the ligand binding potential of Ras in solution
and membrane environments, and between different mutant forms.

Similarities, advantages, and limitations of LIBSA
and pMD

These two MD-based ligand binding site identification techniques
share a number of common features. To name a few, both use molecu-
lar probes to search for binding sites on the surface of the target pro-
tein, and both place major emphasis on probe-target contact
frequency rather than binding score to estimate binding preference.
This means that the probability of interaction of a probe molecule
with a given site determines the druggability of the target site (e.g.
[92,109]). The notion that the ligand binding potential of a site is pro-
portional to the frequency of probe binding to ‘hotspot’ residues also
forms the basis for fragment screening by NMR [119,120], where for
example, difference spectra of an N'*-labeled protein before and after
the addition of molecular probes can be used to determine the ligand
binding potential of a site [119]. Similarly, fragment-based computa-
tional ligand screening methods such as SEED [84] rely on docking of
comparatively few chemical building blocks derived from drug-like
molecules to serve as scaffolds for the construction of novel ligands
[120]. The same basic principle applies to FTMap [91].

Despite the shared features noted above, LIBSA and pMD also differ
in some important ways. First, the tools in LIBSA allow for an efficient
search for allosteric pockets utilizing data from conventional MD simu-
lations, whereas pMD directly couples the pocket identification process
with the simulation. Second, the probe in LIBSA is a drug-like molecule,
preferably a known ligand whose binding site on the protein of interest
is unknown. In contrast, pMD primarily uses as probe small organic
molecular fragments rather than the drugs themselves. Therefore, the
two methods can be used in slightly different ways depending on
need. For instance, if an allosteric ligand has been already identified
but not its binding site, LIBSA can use the known ligand as a probe
to search for its binding site. In the absence of a known ligand, pMD
is a better option. Note that although in principle a known drug can
also be used as a pMD probe, issues of solubility and aggregation
could be a concern. Thus, LIBSA is potentially more appropriate for
retrospective design and pMD for prospective design. pMD would be
a better alternative if nothing is known about a potential ligand or its
binding site also because, in some cases, the probe molecules themselves
may facilitate pocket opening [118]. Third, whereas pMD is exclusively
used in conjunction with MD, LIBSA can be applied on an existing (ex-
perimental) receptor structure or on an ensemble of conformers derived
from MD or other simulation methods. Finally, pMD can be extended
to the native environment of the target protein of interest, such as mem-
brane, more easily than does LIBSA. We note, however, that the two
techniques are not mutually exclusive and can be regarded as comple-
mentary tools for identifying consensus allosteric ligand binding sites
on ensembles of receptor conformations.

Although the two techniques do not differ much in terms of com-
putational cost, LIBSA requires molecular docking after MD simula-
tion and therefore can be marginally more expressive than pMD. As
expected, in both cases computational cost increases with the size of
the target protein but the size of molecular probes has little impact
on computational cost.

Conclusion and Perspective

Recent advances in computational methods have been instrumental in
the identification of allosteric ligand binding sites on Ras, an elusive an-
ticancer drug target. While the search for ligand binding sites on Ras in
solution might be regarded as over with the identification and validation
of four allosteric sites, it remains unclear if these binding sites and their
accessibility to ligands are modulated by interaction of Ras with mem-
branes. Moreover, the potential of the reported hits to become a suc-
cessful lead compound is limited by their poor selectivity and weak
affinity. Therefore, the search for hits that can eventually become
drug leads must continue. We believe future efforts in structure-based
drug discovery for Ras must pay special attention to structural fluctua-
tions of Ras in its native environment of lipid membranes; the discovery
of isoform- and mutation-specific inhibitors would likely depend on our
ability to account for small differences in dynamics and membrane-
organization. Our new method, pMD-membrane, would facilitate
these efforts. Furthermore, selectively stabilizing one of the two sub-
states of GTP-Ras, particularly the substate with weak effector binding
potential, may lead to selective inhibition. Finally, the approaches dis-
cussed in this review are also applicable to other challenging targets, in-
cluding the many members of the large Ras superfamily.
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