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Abstract

Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies
in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose
mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of
these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional
genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that
KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers
have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2Cin lung
cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancre-
atic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes
involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling
pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies
have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mu-
tant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibi-
tors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients.
This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related stud-
ies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that
RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or
co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may
be necessary to improve patients’ outcomes through personalized precision medicine.
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Introduction

RAS proteins are small G proteins that cycle between active
GTP-bound and inactive GDP-bound forms and function as molecu-
lar switches for signal transductions initiated in the cell membrane
[1,2]. Synthesized in cytosol, RAS proteins are transferred to the
inner leaflet of the plasma membrane, where they interact with diverse
membrane receptors and execute signal transduction in a variety of

signaling pathways that govern cell growth, proliferation, differenti-
ation, and death. Activation of upstream growth factor receptors,
such as epidermal growth factor receptor (EGFR), insulin-like growth
factor 1 receptor, and platelet-derived growth factor receptor
(PDGFR), results in the assembly of adaptor proteins Grb2 and the
Son of Sevenless (SOS) complex. SOS is one of the guanine nucleotide
exchange factors (GEFs) that activate RAS by promoting binding of
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RAS with GTP via catalysis of the release of GDP from RAS [3,4]. In-
trinsic GTPase activity enhanced by GTPase-activating proteins
(GAPs) [5] converts GTP to GDP, leading to inactive GDP-bound
RAS (Fig. 1). RAS mutations that diminish GTPase activity or decrease
GDP-binding capacity render RAS in constitutively active GTP-bound
status. In the absence of a RAS mutation, increased RAS activity in
human cancer cells frequently results from RAS gene amplifications
[6,7] and overexpression [8], an increase in activity of upstream signals
from tyrosine kinase growth factor receptors such as HER2 and EGFR
[4,9], or/and altered expression of microRNAs such as let-7 [10,11].

RAS activation leads to stimulation of a wide range of downstream
signaling pathways, most notably the RAF/mitogen-activated protein
kinase (MAPK) kinase (MEK)/ERK [12,13], phosphoinositide 3-kinase
(PI3K)/AKT/mammalian target of rapamycin (mTOR), RalGEF/RAL
[14,15], and Tiam1/RAC [16,17] (Fig. 1) (see details in other review ar-
ticles [18,19]). GTP-RAS binds directly to and activates RAF
[12,13,20], the catalytic subunit of PI3K p110 [21,22], Ral guanine nu-
cleotide exchange factors (RalGEF) [23,24], and RAC GEFs such as
Tiam1 and Vav [16,25]. The signaling cascades initiated by these
RAS-interacting proteins form networks through crosstalk and feed-
back interactions, which have been shown to play critical roles in the
initiation and progression of malignancies [14,26-28]. Because activat-
ing mutations in RAS genes are among the most frequently observed
oncogenic mutations in human cancers, RAS signaling and anti-RAS
therapeutic agents have been intensively investigated. However, RAS
proteins are regarded as non-druggable with small molecule inhibitors
because of their high affinity for GTP and their simple protein struc-
tures. Thus, extensive efforts have been made to develop therapeutic
agents that modulate posttranscriptional modification and/or plasma
membrane localization of RAS proteins [29,30], that intervene in down-
stream signal transductions, and that induce synthetic lethality in RAS
mutant cancer cells [31]. Recently, small molecules have been reported

A

to bind irreversibly to the mutant KRAS (G12C) protein [32], or to
interfere with RAS/SOS [33,34] or RAS-effector protein interactions
[35]. Nevertheless, effective anti-RAS treatment is not yet available clin-
ically. This review discusses knowledge gained from genetically engi-
neered mouse models (GEMMs), human cancer cell lines, clinical
studies about RAS-mediated signaling in tumorigenesis, and the devel-
opment of anti-RAS therapy. It is likely that RAS mutant cancers are
heterogeneous and different therapeutic strategies may be required for
different subclasses of RAS mutant cancers.

GEMMs with RAS Mutations

Mammalian cells have three RAS genes (HRAS, KRAS, and NRAS)
that encode four highly homologous RAS proteins, because the
KRAS gene encodes two splicing isoforms: a major KRAS-4B and a
minor KRAS-4A. These proteins have highly identical sequences in
the first 164 amino residues containing the G domain for GTP binding
and hydrolysis. The remaining 24/25 C-terminal residues are highly
variable among isoforms and critical for membrane localization
(Fig. 1). KRAS-4B, HRAS, and NRAS are ubiquitously expressed,
whereas KRAS-4A is expressed mainly in renal, hepatic, and gastro-
intestinal tissues [36,37]. Evidence has shown that these highly con-
served RAS isoforms carry out similar but indispensable functions
that govern cell growth, differentiation, proliferation, apoptosis,
tumorigenesis, and tumor progression [38]. Gene knockout studies re-
veal that Hras or Nras knockout mice, and even the Hras and Nras
double knockout mice, are viable and show no obvious abnormalities
[39,40]. In contrast, knockout of the Kras gene is embryonically lethal
[41]. Although some of the differences may be derived from differ-
ences in their expression patterns [42,43], it has been reported that dif-
ferent RAS isoforms have different biological functions and different
effects on tumor progression [42-46].
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Figure 1. Diagrams of RAS proteins and RAS signaling pathways (A) Major RAS signaling pathways. RAS GEF activated by upstream growth factor receptors
promotes binding of RAS with GTP via catalysis of the release of GDP from RAS, leading to the activation of downstream pathways (see details in other review
articles [18,19]). Intrinsic GTPase activity enhanced by GAPs converts GTP to GDP, leading to inactive GDP-bound RAS. RAS mutations that cause the loss of
GTPase activity render RAS in a persistent GTP-bound status. (B) Structures of RAS proteins. RAS proteins consist of G domain (amino acids 1-164) that has
93%-99% conserved sequences among RAS proteins and functions as GTPase, and membrane targeting sequences (amino acids 165-188/189) that is highly

variable. The C-terminal CAAX motif required for farnesylation is marked red.
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Expression of mutant Kras'?P

alone in murine embryonic fibro-
blasts (MEFs) induced enhanced proliferation and partial transform-
ation accompanied with an elevation of CDK2 and CDK4. However,
elevated ERK and AKT phosphorylation is not observed in MEFs ex-
pressing endogenous Kras'?P [47]. Moreover, expression of endogen-
ous oncogenic Kras'?P during murine embryos results in widespread
morphological aberrations and early embryonic lethality [47]. Expres-

. 12
sion of endogenous Kras'? al

so frequently results in embryonic le-
thality, although some mice may reach adulthood and develop lung
adenomas and adenocarcinomas [48]. Conditional expression of
these mutant Kras alleles in the lung, pancreas, and gastrointestinal
tract induces preneoplastic epithelial hyperplasias, adenomas, pancre-
atic intraepithelial neoplasia (PanIN), and adenocarcinomas [47-51].
The majority of these Kras-driven tumors do not have an invasive
or metastatic phenotype, although progression to invasive and meta-
static cancers is detected at low frequencies [51,52]. However, the
progression to highly invasive and metastatic cancers is dramati-
cally enhanced by the presence of mutations in other cancer driver
genes, including defects in Tp353 [53-55], Stk11 [56-58], Ink4a/Arf
[53,59], Smad4 [60], Pten [61], Tgfbr2 [62], and Runx3 [63]; and
activation of Wnt/beta-catenin signaling [64]. For example, Kras-
activating mutations in lung epithelial cells predispose mice to early
onset of lung adenocarcinoma [49,50,65]. Nevertheless, such tumors
do not have an invasive or metastatic phenotype. Metastasis occurs
when additional genetic changes, such as Tp53 mutations or Stk11 de-
letion, are introduced [54,57].

Efforts were made to delineate the downstream effectors and path-
ways that are required for RAS-mediated tumorigenesis in GEMMs. Sev-
eral genes or pathways have been identified as participants in Kras-driven
lung and pancreatic cancers, because their ablation or deletion prevents
or reduces mutant Kras-induced tumors. Among them are PI3K/PDK1
[26,66], PI3K/RAC1 [67-70], RAFMEK/ERK [71,72], TBK1/IKK/
NFxB [73-75], IL-6/STAT3 [76,77], YAP [78], Foxm1/NFxB [79], ana-
bolic glucose metabolism [80], GM-CSF-mediated recruitment of mye-
loid cells [81], ERK/RHOA/focal adhesion kinase (FAK) network [82],
fibroblast activating protein (FAP) [83], and Myc [84].

For example, PI3K signaling was found to be necessary in
Kras-induced malignant transformations in pancreatic cancer [85]
and lung cancer [66,86]. Pancreas-specific inactivation of Pik3ca,
but not Pik3cb, prevented the occurrence of all types of malignant le-
sions induced by expression of mutant Kras, including PanIN and
acinar-to-ductal metaplasia [69,85]. Pik3ca ablation and chronic in-
hibition led to up-regulation of AKT signaling, possibly resulting
from compensatory activity from other PI3K isoforms. In contrast,
Pik3ca ablation significantly diminished both Racl activity and ex-
pression in Kras mutant pancreatic cells, accompanied by significant
inhibition of Kras-activated Racl guanine exchange factors Tiam1
and Vav1 [69]. Pancreas-specific ablation of Rac1 has the same pheno-
type as Pik3ca ablation in Kras mutant mice [68,69], indicating the
PI3K/RAC axis plays an important role in Kras-driven pancreatic
tumor development. Similarly, Stat3 phosphorylation is found to
occur at multiple stages of Kras'?P-driven pancreatic tumorigenesis
but not in normal pancreatic tissue [76,77]. Disruption of the IL-6
gene and conditional inactivation of Szat3 in the pancreas reduced
PanIN and pancreatic ductal adenocarcinoma (PDAC) formation in
mutant Kras'*® mice [76,77], indicating that Stat3 activity is required
for the development of the early premalignant pancreatic lesions,
acinar-to-ductal metaplasia, and PanIN, and for the progression
from PanIN to invasive PDAC [77]. A recent study showed that
TBK1/IKK regulates autocrine cytokines CCLS5 and IL-6, which con-
tributes to Kras-driven tumorigenesis [74].

Treatment Response in GEMMs with RAS-driven
Tumors

In a doxycycline-inducible Hras'?"-driven mouse melanoma model
with null Ink4a, withdrawal of doxycycline resulted in Hras'?" down-
regulation, marked apoptosis in the tumor cells and host-derived
endothelial cells, and histological regression of primary and explanted
tumors [87], demonstrating that the mutant Hras'?V is required in
both the initiation and maintenance of solid tumors. The same results
were observed in lung tumors [88] and pancreatic tumors [89,90] in-
duced by doxycycline-regulated Kras'?P. Withdrawal of doxycycline
in transgenic mice expressing Kras4b'2P in type II pneumocytes, with
or without deficiencies in either the Tp53 gene or the Ink4a/Arf locus,
b"?P-mediated tumors [88]. Although
the p53 gene or Ink4a/Arf deficiencies dramatically accelerate tumor

led to rapid regression of Kras4

initiation and progression, removal of doxycycline caused a rapid re-
gression of tumor burdens, implying that continued production of mu-
tant Kras is necessary to maintain the viability of tumor cells,
regardless of the presence of other cancer drivers.

In Kras-driven mouse pancreatic cancer models, treatment with
MEK inhibitors (AZD6244, GDC-0973) or PI3K inhibitors (BEZ2335,
GDC-0941, BKM120) (Fig. 2) alone induced only partial tumor growth
suppression, which did not significantly prolong overall survival (OS).
Treatment with a MEKT1 inhibitor resulted in cytostatic effects accom-
panied by sustained activation of the PI3K/AKT/mTOR pathway and
receptor tyrosine kinases EGFR, HER2, PDGFR, and AXL [90]. Similar
results were observed in Kras'*P-driven lung cancer in mice [91]. Treat-
ment with a dual pan-PI3K and mTOR inhibitor BEZ235 is able to sub-

stantially suppress the growth of Pik3ca'**"®

-induced lung tumors but
not Kras'?P-driven lung tumors [91], suggesting that PI3K may be re-
quired for Kras-induced tumorigenesis but less crucial for tumor main-
tenance. Nevertheless, simultaneously targeting both MEK and PI3K
pathways led to marked synergy in shrinking these Kras mutant cancers,
resulting in a significant survival advantage when compared with con-
trols [90,92,93]. Partial inhibition of Kras'*-driven lung tumorigenesis
was also observed in treatment with the MEK inhibitor selumetinib
(AZD6244) and the TBK1/IKK/JAK inhibitor CYT387 [74]. The syn-
ergistic combination’s effects on Kras'*P-driven lung tumors were also
reported for combination therapy of farnesyl and geranylgeranyl di-
phosphate synthases inhibitor lipophilic bisphosphonates plus mTOR
inhibitor rapamycin [94]; or combination of MEK inhibitor selumetinib
plus the BCL2/BCL-XL inhibitor ABT-263 (navitoclax) [95].

A study comparing treatment responses of Kras'?P-driven lung
cancer with concomitant loss of either Tp53 or Stk11 revealed that
loss of either gene markedly impaired the response of Kras mutant
cancers to docetaxel monotherapy [96]. Nevertheless, Kras/Tp53 mu-
tant tumors, which had increased MEK/ERK signaling, were sensitive
to the combination therapy of docetaxel plus selumetinib. In contrast,
Kras/Stk11 mutant tumors, which had activation of AKT and SRC,
were resistant to this combination therapy [96]. Similarly, Kras and
Kras/Tp33 mutant lung tumors were found to be susceptible to Myc
inhibition with dominant-negative Myc [84] or with the bromodo-
main and extra-terminal bromodomain inhibitor JQ1 [97], whereas
Kras/Stk11 mutant mouse cancer cells and human lung cancer cells
were resistant to the JQ1 treatment [97]. Knockdown of STK11 in
human KRAS mutant lung cancer cells sensitive to JQ1 caused resist-
ance to this inhibitor, indicating the causal relationship between
STK11 deficiency and JQ1 resistance. In contrast, Kras/Stk11 mutant
mouse tumors responded to the treatment with the drug phenformin
which affects metabolisms [98], and were highly sensitive to the inhib-
ition of deoxythymidylate kinase [99], suggesting that the presence of
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Figure 2. Chemical structures of small molecule inhibitors targeting RAS downstream effectors MEK inhibitors: selumetinib, cobimetinib, and trametinib;
RAF inhibitor: sorafenib; PI3K inhibitors: dactolisib, pictilisib, and buparlisib; and AKT inhibitor: MK-2206.

co-mutations of another cancer driver gene may have a dramatic im-
pact on responses to anticancer drugs.

Although both the ablation of oncogenic Kras expression and the
combination of MEK and PI3K/mTOR inhibitors can induce com-
plete regression of Kras-driven tumors, resistance to Kras ablation
or to the combination therapy has been observed in relapsed tumors
[100,101]. Some of these relapsed tumors had increased activity in
mitochondria, autophagy, and lysosomes functions, had reduced
glycolytic activity, and were sensitive to oxidative phosphorylation in-
hibitors such as oligomycin [100]. Yap1 amplification is another
mechanism of resistance identified in the relapsed tumors after
Kras'?P ablation, indicating that Yap1 activation may lead to a bypass
of Kras dependency [101]. In a systemic screening with 15,294 open
reading frames, YAP1’s overexpression was identified in surviving
cells after inducible shRNA-mediated KRAS knockdown in the
human KRAS-dependent colon cancer cell line HCT116, and in ac-
quired resistance to Kras suppression in a Kras-driven murine lung
cancer model [102]. In addition, constitutive AKT activation also
caused resistance to Kras ablation [90], indicating multiple mechan-
isms underlying resistance to anti-RAS therapy.

Treatment Response in RAS Mutant Human
Cancer Cells

Studies in human cancer cell lines demonstrated that KRAS gene ex-
pression is required for survival of some KRAS mutant cancer cells.
Disrupting KRAS by homologous recombination in KRAS mutant
colon cancer cell lines DLD-1 and HCT116 resulted in inhibition of
MYC expression and suppression of tumor cell growth both in vitro
and iz vivo in nude mice [103], implicating the expression of mutant
KRAS is crucial for growth of these tumor cells. Knockdown of KRAS
with shRNAs in a panel of KRAS mutant lung and pancreatic cancer
cell lines has revealed that KRAS mutant cancer cell lines can be clas-
sified into KRAS-dependent and -independent groups, based on the re-
quirement of KRAS expression for cell survivals [104]. Many of
KRAS-dependent cells exhibit a classic epithelial morphology and
gene expression signature, expressing prominent E-cadherin, whereas

KRAS-independent cell lines have epithelial mesenchymal transition
phenotype, expressing little or no E-cadherin, but expressing the mes-
enchymal marker vimentin. SYK, RON kinases, and integrin b6 were
high in KRAS-dependent cell lines and were required for epithelial dif-
ferentiation and cell survival in KRAS-dependent cells [104].

Synthetic lethality screening with siRNA libraries in cell lines with
or without mutant RAS genes has revealed a number of genes whose
knockdown may selectively induce lethality in cells with mutant RAS
genes. Reported synthetic lethal partners for oncogenic RAS include
PLK1, a serine/threonine protein kinase that regulates cell mitosis
[105]; the transcription factor WT1 [106]; TBK1, an IxB kinase that
regulates the stability of IxB [107]; SYK [104]; and CDK4 [108]. The
synthetic lethality interactions of these targets with oncogenic RAS
suggest that the inhibitors targeting to these molecules might selective-
ly kill RAS mutant cancer cells. Indeed, small molecule inhibitors that
disrupt mitosis, including paclitaxel and the PLK1 inhibitor BI-2536
[109], were found to be synthetic lethal in RAS mutant cells [105].
Synthetic lethality screening is also employed to identify combination
therapy for investigational drugs targeting RAS downstream path-
ways. Using a pooled 5000 shRNA library targeting 1200 ‘druggable’
genes, Bcl-XL was identified as a synthetic lethal partner for selumeti-
nib in KRAS mutant colon cancer cell lines HCT116 and SW620 [95].
A combination of selumetinib and ABT-263 induced substantial
apoptosis in ~50% of KRAS mutant cancer cell lines derived from
colon, lung, and pancreatic cancers, particularly in those with epithe-
lial signature [95]. The synergistic effects of the combination are also
demonstrated i vivo in xenograft tumors and in Kras'?
lung tumors [95]. Of note, a study using shRNA library screening for
genes that may have synthetic lethal interactions with the oncogenic
KRAS gene in the colon cancer cell line DLD-1 has led to the identifi-
cation of ~370-1600 mutant KRAS synthetic lethal genes, depending
on the stringency of statistical analyses [105], demonstrating the diver-
sity of biological processes or pathways regulated by KRAS and the
possible challenges that may be encountered by employing the synthet-
ic lethality approach to identify therapeutic targets.

D_driven mice

The synthetic lethality approach has also been investigated in the
identification of anticancer agents for RAS mutant cancer cells by
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screening chemical libraries [110-112]. Several of such anticancer
agents have been reported, including triphenyl tetrazolium and a sul-
finyl cytidine derivative that showed ~6-fold selectivity for cell lines
containing mutant KRAS [111]; erastin which exhibited lethal select-
ivity in human tumor cells harboring mutations in the HRAS, KRAS,
or BRAF oncogene by acting on mitochondrial voltage-dependent
anion channels and inducing oxidative cell death [112,113]; lanperi-
sone [114]; and oncrasin-1 [115]. Erastin [113], lanperisone [114],
and oncrasin compounds [116,117] all induced cell killing effects in
RAS mutant tumor cells by inducing oxidative stress, although
through different underlying mechanisms.

Through chemical library screening on cells with or without a mu-
tant KRAS gene [115] and lead compound optimization [118-120],
we recently developed a novel compound designated oncrasin-72
(NSC743380) that is highly active [median growth inhibitory con-
centration (ICsq) between 10 nM and 1 uM] in vitro in 30 of 102
cancer cell lines tested [118,121], including many KRAS mutant can-
cer cell lines [115,119,121]. Mechanistic characterization revealed
that NSC743380 and its analogs induced apoptosis in sensitive cancer
cells [115,118,119], inhibited phosphorylation of the C-terminal
domain of RNA Pol II [120,122], induced sustained JNK activation
by inhibiting its dephosphorylation [119], induced reactive oxygen
species (ROS) accumulation [117], inhibited STAT3 phosphoryla-
tion, and suppressed cyclin D1 expression [118], suggesting that
NSC743380 modulates multiple cancer-related targets. Blocking
NSC743380-induced ROS generation with antioxidants dramatically
abolished its apoptosis-inducing ability but had minimal effect on its
inhibition of STAT3, suggesting that STAT3 inhibition is not caused
by ROS production. In contrast, knockdown of STAT3 by siRNA
induced ROS generation and suppressed tumor cell growth [121], sug-
gesting that STAT3 inhibition might be upstream of ROS induction.
Interestingly, the activation of RAS signaling pathways has been
reported to up-regulate the overall cellular antioxidant capacity
[123]. The interactions among RAS, STAT3, and redox pathways
have been discussed in another review [124]. In vivo studies have
shown that the intravenous or intraperitoneal administration of
NSC743380 caused complete tumor regression or significant growth
suppression in several xenograft tumor models [118,121], indicating
that NSC743380 has promising iz vivo activity. More recently, we im-
proved NSC743380’s stability and safety through the synthesis and
evaluation of its prodrugs. Oncrasin-266 spontaneously releases
NSC743380 in physiological solutions in vitro and in vivo, has im-
proved stability and pharmacokinetics, and is better tolerated in
mice at a higher dose level (150-300 mg/kg, i.p.) than NSC743380
[125], suggesting that the prodrug is a favorable candidate for further
development.

Nevertheless, the correlations between NSC743380’s anticancer ac-
tivity and KRAS mutations in the NCI-60 cell lines and in the 50 lung
cancer cell lines tested were not significant [118,121], because some
KRAS mutant cancer cell lines were resistant while some KRAS wild-
type cancer cell lines were sensitive to NSC743380. Our recent study
revealed that the expression of a sulfotransferase (SULT), SULT1A1,
in cancer cells is required for NSC743380’s anticancer activity and
that the expression of SULT1A1 is capable of predicting the responses
to NSC743380 [126]. SULT1A1 is a biotransformation enzyme that
bioactivates several pro-carcinogens [127-133] and some anticancer
drugs, such as tamoxifen [134]. Identification of SULT1A1 as a predict-
ive biomarker for NSC743380 sheds light on mechanisms of selectivity
and the possible toxicity of this compound [135]. The process of iden-
tifying this predictive biomarker underscores the importance of activity
characterization in a large set of molecularly annotated cancer cell lines

and rigorous validation of causal relationships between the sensitivity
and the biomarker.

Studies on Clinical Specimens and Clinical Trials

KRAS mutations are frequently found in human adenocarcinomas of
the pancreas (70%-90%) [136-138], colon (50%) [139,140], and
lung (35%) [141-143]. Based on human cancer gene mutation data-
sets retrieved from www.cBioPortal.org, KRAS mutations are also fre-
quently detected in multiple myeloma (22%) and cancers of the ovary
(15%), uterine (18%), and stomach (16%). NRAS mutations are fre-
quently detected in melanoma (30% ), multiple myeloma (18%), colo-
rectal cancer (10%), and thyroid cancer (8%). In contrast, HRAS
mutations occur in low frequencies (5% or less) in cancers of the blad-
der, head/neck, and uterine. The majority of genetic alterations in
these oncogenic RAS genes are missense mutations in codons 12,
13, and 61. The most common mutant alleles for KRAS are 12D,
12C, 12V, 12R, and 13D [144,145]. Evidence has shown that differ-
ent KRAS mutant alleles may have different clinical impacts on the
prognosis of lung [146,147], colon [148-150], and pancreatic [151]
cancers, although the alleles associated with poor clinical outcomes
are not consistent in these studies. Molecular characterization of clin-
ical specimens from patients who participated in prospective phase I
biomarker-integrated approaches of targeted therapy for lung cancer
elimination revealed that the expressions of cell cycle regulators PLK1,
CCNB1, and CCNE1 were lower in KRAS'?¢ and KRAS™Y mutant
tumors, but were higher in the remaining KRAS mutant tumors, when
compared with KRAS wild-type cancer [146]. Analysis of NSCLC cell
lines revealed that cancer cells with mutant KRAS'?® had activated
PI3K and MEK signaling, whereas those with mutant KRAS'*€ or
KRAS'™V had activated Ral signaling and decreased growth factor-
dependent AKT activation. Moreover, ectopic expression of
KRAS"P or KRAS'?€ in TPS3 knockdown human bronchial epithe-
lial cells (HBECsiP53) had different effects on AKT activation and
RalA/B expression [146], suggesting that different mutant alleles
may have different preferences in activating downstream pathways.

Consistent with the roles of Kras mutations in tumor initiation in
mouse models, analysis of clinical specimens revealed that KRAS
mutations are frequently detected in human hyperplastic/metaplastic
pancreatic acinar-ductal cells [152-154] and colorectal adenomas
[155-157]. KRAS alterations may represent an early event in pancre-
atic ductal tumorigenesis, whereas TP53 gene changes may represent
an event required for the malignancy progression of ductal tumors
from lower to higher grades [158]. Whole-genome analysis on pancre-
atic cancer revealed that, although KRAS is mutated in ~95% of
PDACs, PDACs can be classified into four classes based on patterns
of chromosomal rearrangements: stable, locally rearranged, scattered,
and unstable [138]. These results demonstrated that mutations in the
cooperative pathways or cancer drivers may further differentiate
KRAS mutant cancers into subgroups.

The data retrieved from whole-genome sequencing analyses for
lung, pancreatic, and colorectal cancers at The Cancer Genome Atlas
(TCGA) databases (http:/www.cbioportal.org) revealed that the major-
ity of KRAS mutant cancers have co-mutations in other cancer driver
genes (Fig. 3). The common co-mutations detected in lung cancer are
TP53, SKT11, CDKN2A, and KMT2C; in colon cancer, APC, TP53,
and PIK3CA; and in pancreatic cancer, TP53, CDKN2A, SMAD4, and
MED12. A recent study using immunohistochemical analysis showed
that LKB1 (encoded by STK11) is lost in 30% of KRAS mutant lung
adenocarcinoma. KRAS mutant NSCLC patients with concurrent
LKB1 loss had a high number of metastatic sites at the time of diagnosis,
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Figure 3. Molecular heterogeneity in KRAS mutant adenocarcinomas Status of KRAS mutations and co-mutations in other cancer driver genes in 230 lung
adenocarcinomas (A); 90 pancreatic adenocarcinoma (B); and 220 colorectal adenocarcinoma (C) retrieved from The Cancer Genome Atlas (TCGA) databases at
the website http:/www.cbioportal.org. Each vertical line represents a tumor. The graph shows mutations in the top seven cancer driver genes in lung, pancreatic,
and colorectal adenocarcinomas. Red, amplification; blue, homozygous deletion; green, missense mutation; black, truncating mutation; blown, inframe mutation.
Note most of KRAS mutant cancers have co-mutations in other cancer driver genes.

and had a high incidence of extra-thoracic metastases [159]. Interes-
tingly, concurrent mutations in KRAS and STK11 in human cancer
cells resulted in susceptibility to the depletion of the coatomer complex
I subunits [160], which are required for lysosomal maturation and
CDC42-mediated transformation. More recently, an integrative ana-
lysis of genomic, transcriptomic, and proteomic data from early stage
and chemo-refractory lung adenocarcinoma demonstrated that KRAS
mutant lung cancer can be classified into three subgroups by co-
occurring genetic alterations in STK11, TP53, and CDKN2A/B
[161]. These three groups have distinct clinical outcomes and treatment
responses. KRAS/STK11 cells showed increased vulnerability to HSP90
inhibitors. These results strongly indicate that concurrent mutations in
KRAS and STK11 genes may represent a subgroup of KRAS mutant
tumors that differ from other KRAS mutant cancers in treatment
responses.

Because posttranslational modifications of RAS proteins are re-
quired for them to be translocated to plasma membrane to execute
their biologic functions, efforts have been made to target enzymes in-
volved in these posttranslational modifications, including farnesyla-
tion at the cysteine residue of the C-terminal CAAX motif, removal
of the AAX peptide, and methylation of farnesyl-cysteine at the
C-terminal [162]. For HRAS and NRAS, palmitoylation on cysteine
residues near the C-terminal is also required for RAS re-localization
to the membrane. For KRAS-4B, a polybasic domain located at the
C-terminal serves as the second signal for membrane localization
[163,164] (Fig. 1). Because farnesylation of RAS is critical to its bio-
logic function, farnesyltransferase inhibitors (FTIs) have been inten-
sively investigated in clinical studies. Several phase II and phase III

clinical trials showed that the FTIs tipifarnib and salirasib (Fig. 4), ei-
ther alone or in combination therapy, did not have significant activity
in lung, pancreatic, and colorectal cancers [165-168].

Targeting the RAS downstream pathways, particularly the RAF/
MEK/ERK and PI3K/AKT/mTOR pathways [18,169], has also been
investigated for treatment of RAS mutant cancers in clinics. A clinical
trial with biomarker-integrated targeted therapy for lung cancer has
revealed that sorafenib, a pan-RAF and VEGFR inhibitor [170], has
impressive benefits for KRAS mutant patients [171]. However, select-
ive inhibition of BRAF with a dominant-negative construct [172] in
mice or with BRAF-selective inhibitors such as vemurafenib in patients
[173,174] promoted the development and/or progression of RAS mu-
tant cancers, possibly because of the activation of other RAF isoforms,
such as RAF1. MEK inhibitors selumetinib and trametinib have been
investigated for treatment of KRAS mutant tumors in a few clinical
trials. A biomarker-derived multi-arm phase II trial revealed that selu-
metinib monotherapy failed to achieve its primary end point, with a
response rate of 11% [175]. Nevertheless, combination therapy of
MEK inhibitors with either docetaxel [176], AKT inhibitors [177],
or PI3K inhibitors [178] led to improved clinical responses. In a ran-
domized multicenter phase II study, docetaxel plus selumetinib treat-
ment for patients with advanced KRAS mutant NSCLC resulted in an
objective response rate of 37%, with a median OS of 94 months and
median progression-free survival (PFS) of 53 months, whereas the pa-
tients who received docetaxel alone had an OS and PFS of 52 and 21
months, respectively [176]. Combination of selumetinib with AKT
inhibitor MK-2206 resulted in an objective response of 3/13 (23%)
of KRAS mutant NSCLC patients [177], while combination of
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Figure 4. Chemical structures of therapeutic agents that modulate RAS subcellular localizations

trametinib with PI3K inhibitor buparlisib led to objective responses in
KRAS mutant ovarian cancer and NSCLC [178]. However, a combin-
ation of trametinib with gemcitabine for treatment of metastatic pan-
creatic cancer [179], or selumetinib with irinotecan for treatment of
KRAS-mutated colorectal cancer [180], did not improve PES or overall
response rate when compared with gemcitabine or irinotecan plus pla-
cebo. Together, these studies demonstrate that targeting multiple RAS
signaling pathways may provide benefits to a subgroup of RAS mutant
cancer patients, and that effective strategies to stratify patients for pre-
cision therapy will be required to improve efficacies.

Conclusions and Perspectives

Studies in GEMMs have demonstrated that Ras gene mutations are
sufficient to initiate tumorigenesis, although the presence of additional
genetic alterations in other cancer driver genes is often required for
progression to invasive and metastatic cancers [51,52]. These studies
have led to the identification of several genes whose abnormalities co-
operatively promote the initiation and progression of Ras mutant tu-
mors. Similarly, several genes whose ablations or inhibition prevent
and/or reduce Ras-mediated tumorigenesis were reported, suggesting
that they may serve as potential therapeutic targets for treating RAS
mutant cancers. Studies in human cancers demonstrated that RAS
gene mutations are frequently detected in premalignant tissue speci-
mens and that most KRAS mutant cancers have co-mutations of
other cancer driver genes. Moreover, emerging evidence has demon-
strated that KRAS mutant cancers are heterogeneous in terms of sig-
naling/metabolic aberrations and responses to treatments. The
variations in co-mutations, mutant alleles of RAS genes, and origins
of tumor cells can all cause such heterogeneity. Thus, effective classi-
fication of RAS mutant cancers will be required to improve anti-RAS
therapy through personalized precision medicine. Because crosstalk
and feedback activations are commonly observed in RAS-mediated
signaling pathways, and because most solid tumors carry multiple
concomitantly activated oncogenes or inactivated tumor suppressor
genes [181], simultaneously targeting multiple cancer-associated path-
ways is likely required for effective anti-RAS therapy. Our experience
with selective cell killing of NSC743380 in SULT1A1" cells [126] in-
dicates that even though some passenger mutations in tumor cells may
not contribute to tumorigenesis, they may have an impact on treat-
ment response because of altered drug metabolism. Therefore, they
may be used as biomarkers to identify responders.

The initiation and progression of KRAS mutant tumors are also
drastically affected by tumor microenvironments. Several tumor micro-
environment factors have been identified as crucial in Kras-mediated

tumor initiation and progressions in GEMMs. Among them are
GM-CSF-mediated recruitment of myeloid cells [81], the IL-6/STAT3
signaling pathway [76,77], the ERK/RHOA/FAK network [82], and
FAP [83]—a member of the serine protease family selectively expressed
in stromal fibroblasts of epithelial cancers [182]. Genetic deletion
and pharmacologic inhibition of FAP resulted in inhibition of Kras'*"-
driven lung tumors in mice, possibly through indirect inhibition
of tumor cell growth by modulating extracellular matrix/integrin-
mediated singling [83]. These results demonstrate the feasibility of
modulating the tumor microenvironment in the treatment of RAS mu-
tant cancer, and highlight the necessity of incorporating factors of
tumor microenvironment into the design of future anti-RAS therapies.
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