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Abstract

Accumulated evidence suggests that the Hippo signaling pathway plays crucial roles in mammary

gland development and breast cancer. Key components of the Hippo pathway regulate breast epithe-

lial cell proliferation, migration, invasion, and stemness. Additionally, the Hippo pathway regulates

breast tumor growth, metastasis, and drug resistance. It is expected that the Hippo pathway will pro-

vide novel therapeutic targets for breast cancer. This review will discuss and summarize the roles of

several core components of the Hippo pathway in mammary gland development and breast cancer.
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Introduction

The Hippo pathway was discovered ∼20 years ago in Drosophila
melanogaster [1,2]. The Hippo pathway is largely conserved in
mammals; however, it becomes more complex in mammals than
in Drosophila [3–7]. The Hippo pathway is regulated by various
upstream signals, such as cell–cell contact [8,9], extracellular matrix
[10], and cell stress [11]. In addition, Hippo pathway is regulated by
G-protein-coupled receptors (GPCRs) [12] and PI3K [13,14]. When
Hippo pathway is activated, phosphorylated mammalian sterile
20-like kinase 1/2 (Mst1/2) interact with Sav1 (also known as
WW45) to form a complex [4]. The activatedMst1/2 complex directly
phosphorylates the large tumor suppressor 1 and 2 (LATS1/2) [7] and
MOBKL1A/B (also known as MOB1) that forms another kinase com-
plex with LATS1/2 [5] (Fig. 1). Phosphorylated and activated LATS1/2
phosphorylates transcription coactivators YAP and TAZ at S127 and
S89, respectively [15–18], leading to the YAP/TAZ cytoplasm reten-
tion by 14-3-3 or degradation [17–19]. Unphosphorylated YAP and
TAZ translocate into the nucleus to interact with transcription factors,
including TEAD1–4 [20–22], Smads [23], p73 [24], and so on. The
transcription complexes regulate expression of a number of downstream
target genes, for example, CTGF [22] and Cyr61 [25], by which the
Hippo pathway modulates various cellular behaviors [26,27].

The Hippo pathway is believed to be a pivotal pathway that con-
trols organ size in Drosophila and mammals by coordination of cell
proliferation and survival [15,28–40] (Fig. 1). Furthermore, the
Hippo pathway plays an important role in stem cells of several organs,
including liver, skin, intestine, heart, and so on [33,41–46]. Addition-
ally, the Hippo pathway also determines the self-renewal and differen-
tiation of embryonic stem cell [47,48], mesenchymal stem cell [49],
induced pluripotent stem cell [47,50], and cancer stem cell (CSC)
[51,52]. The Hippo pathway regulates embryonic development and
organ homeostasis. The aberration of the pathway causes different dis-
eases, such as cancer [35,52–61], cardiovascular diseases [62], and
neurodegenerative diseases [63]. In this review, we focus on several
core components of the Hippo pathway in mammary gland develop-
ment and breast cancer.

The Hippo Pathway Regulates Mammary Gland

Development

Mammary gland development can be divided into embryonic and
postnatal development stages. Postnatal mammary gland development
is further divided into puberty, pregnancy, lactation, and involution
periods. There is only a rudimentary ductal structure invasion into
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the fat pad before birth. After birth, mammary development keeps qui-
escent until puberty. At puberty stage, ducts begin to elongate and
undergo secondary branching. During pregnancy, mammary epithe-
lial cells proliferate rapidly and differentiate in response to hormones,
including estrogen, progesterone, and prolactin. Lipid droplets are
formed at late pregnancy. Alveoli secrete milk through ducts and nip-
ples during lactation. At involution, a large number of mammary epi-
thelial cells undergo apoptosis. At the end of involution, mammary
gland returns to a puberty-like state.

Several key components of the Hippo pathway, such as Sav1,
Lats1, Yap, and Taz, have been reported to regulate mammary
gland development (Table 1).

Sav1 is a negative regulator for YAP. Breast specific Sav1 knockout
6- and 8-week-old virgin mice did not show defects in terminal end

bud formation, ductal growth, or ductal branching [64]. In agreement
with this, YAP transgenic does not affect mammary gland develop-
ment in virgin stage [64]. However, there are no lipid droplets in the
mammary gland alveoli of Sav1-deficient mice in late pregnancy stage,
at P16.5 and P18.5, due to a defect in the ability of the epithelial cells
to differentiate [64]. YAP over-expression showed a similar phenotype
to Sav1 knockout [64]. Thus, Sav1 may specifically affect mammary
gland terminal differentiation through YAP [64].

Lats1 is the protein kinase for YAP. Lats1 plays a crucial role in
mammary gland development. Lats1-deficient female mice showed re-
duced amount of breast epithelial tissue, and even nipple in some cases
[65]. In the mammary glands of Lats1 knockout female mice, there is
frequently no epithelial component in mammary gland fat pads [65].
The defects of mammary gland development may be accounted by the
reduction of the prolactin and luteinizing hormone levels [65]. Breast
specific Lats1 knockout mouse model is required to illustrate the in-
trinsic role of Lats1 in mammary gland development.

Yap plays an essential role in promoting the survival of mammary
epithelial cells during late pregnancy. Yap-deficient mouse mammary
glands increase apoptosis but have no effect on cell proliferation. Fur-
thermore, the alveolar structure is reduced at P16.5 and P18.5 [64].
This is different from Sav1-deficient mammary glands, which shows
normal alveolar structure during pregnancy [64]. Thus, Yap is indis-
pensable for mammary epithelial cell survival in the pregnancy stage
[64]. Importantly, Yap knockout can rescue the mammary gland
phenotype induced by the Sav1 deficiency in late pregnancy stage.
Sav1/Yap double knockout mammary glands show reduced alveolar
structure but normal terminal differentiation [64]. This result further
confirmed that YAP is a critical downstream target of Sav1.

Taz is a YAP-like transcription co-activator. Taz-deficient mouse
mammary glands are normal in pubescent virgin (5–8 weeks old),
like Yap-deficient mice. However, the number and complexity of
mammary gland branches were reduced in post-pubertal virgin (16
weeks old) stage [66]. This is different from the Yap-deficient mouse
mammary glands. The morphologic defect in Taz-deficient mice
may be caused by the reduction of basal cells [66]. Knockdown of
TAZ in basal cells does not inhibit cell proliferation; instead, it induces
luminal differentiation [66]. Additionally, over-expression of TAZ can
reprogram luminal cells into basal-like cells. Thus, TAZ may
determine the balance and fate of basal and luminal cells in mammary
glands.

The Hippo Pathway Plays Important Roles

in Breast Cancer

The role of YAP in breast cancer

Accumulated evidence suggests that YAP is an oncoprotein that pro-
motes breast cancer tumorigenesis and progression. The Yap gene is
amplified in breast tumors of Brca1/p53-deficient mice [67]. YAP
promotes breast cancer cell proliferation and survival [67,68].
PyMT-induced mammary tumors showed increased expression of
YAP and loss of YAP suppresses PyMT-induced tumor growth [64].
High YAP expression is associated with the E-cadherin-deficient inva-
sive lobular breast cancers [69]. Another study revealed that positive
YAP expression is associated with shorter survival in HER2-positive
breast cancer patients [70]. Consistently, YAP over-expression has
been demonstrated to promote breast cancer cell growth in vitro and
in vivo [68]. YAP has also been shown to promote breast cancer cell
migration, invasion, epithelial-to-mesenchymal (EMT) transition, and
metastasis. YAP was reported to promote breast cancer cell migration

Table 1. The Hippo pathway regulates mammary gland

development

Gene Phenotype Mechanism Reference

Sav1 Epithelial cells are less
differentiated in late
pregnancy stage

YAP [64]

Lats1 Epithelial tissue reduced Prolactin and LH
decreased

[65]

Yap Alveolar structure are
reduced in pregnancy
stage

Unclear [64]

Taz Number and complexity
of branches reduced in
post-pubertal virgin
stage

Abnormal epithelial
lineage-specific gene
expression

[66]

LH, luteinizing hormone.

Figure 1. The Hippo pathway regulates organ size by controlling cell

proliferation, apoptosis, and stemness in mammals
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and invasion by promoting the gene transcription of receptor for
hyaluronan-mediated motility [71].

YAP promotes breast cancer cell growth and progression predom-
inately through interacting with TEAD transcription factors [71–73].
In addition, it has been found that YAP increases the protein stability
of KLF5, an oncogenic transcription factor that promotes breast cell
proliferation and survival [74–76]. YAP interacts with KLF5 and pre-
vents its ubiquitination by E3 ubiquitin ligase WWP1 [77]. YAP over-
expression increases the protein level of KLF5 and its downstream tar-
get genes, including FGF-BP and ITGB2 [77]. Depletion of YAP in
MCF10A and SW527 cells decreases the expression levels of KLF5,
FGF-BP, and ITGB2, induces apoptosis and suppresses cell prolifer-
ation and tumor growth [77].

Several studies about YAP upstream regulators also support that
YAP is an oncogene in breast cancer (Fig. 2). Integrin-linked kinase
(ILK) has been shown to promote YAP nuclear translocation. Inhib-
ition of ILK results in YAP phosphorylation, cytoplasm retention,
and tumor growth inhibition [72]. Serum starvation induces phos-
phorylation of 130-kDa isoform of angiomotin (Amot130) by
LATS1/2 and recruitment of an E3 ubiquitin ligase AIP4/ITCH,
which promotes YAP ubiquitination and degradation [78]. In agree-
ment with this finding, Amot130 inhibits breast cancer cell growth
[78]. However, Amot80 promotes breast cell growth through activat-
ing ERK [79]. KIBRA induces LATS and YAP phosphorylation.
KIBRA over-expression inhibits YAP-induced EMT in MCF10A cells
[80]. Leukemia inhibitory factor receptor also inhibits YAP activation

and breast cancer metastasis through activating Mst1/2–Lats1 cascade
[81,82]. Recently, it has been found that TGF-β signaling regulates YAP
to regulate metastasis of breast cancer cells [83]. YAP/TEAD bind with
pSMAD2/3 that induces the expression of target genes, NEGR1 and
UCA1, to promote breast cancer cell anchorage-independent growth
and migration [83].

However, a few studies suggest that YAP may function as a tumor
suppressor in breast cancer. It was reported that the expression of YAP
is decreased in breast tumor tissues compared with normal breast tis-
sues [84,85]. Yuan et al. [86] found that YAP knockdown protected
MDA-MB-231 cells from anoikis and promoted cell migration, inva-
sion, and tumor growth. Consistent with this, nuclear YAP1 can bind
with p73 tumor suppressor and induce the expression of proapoptotic
gene Puma in breast cancer [87]. Thus, the role of YAP in breast cancer
may be context dependent. Nevertheless, the evidence from Yap
knockout mouse model suggests that YAP is more likely to play an
oncogenic role in breast cancer.

TAZ promotes breast cancer

TAZ promotes breast cancer cell proliferation, migration, invasion,
EMT, andmetastasis. TAZ is over-expressed in breast cancer, especial-
ly in high-grade and metastatic breast cancer [52–54,88]. Several stud-
ies showed that TAZ is over-expressed in triple-negative breast cancer
[66,89]. Moreover, TAZ expression negatively correlates with disease-
free survival in breast cancer patients [53].

Figure 2. The regulation of YAP/TAZ has broad effects on breast cancer cell phenotypes GGPP, geranylgeranyl pyrophosphate; BCSC, breast cancer stem cell.

Hippo pathway in breast cancer 55

D
ow

nloaded from
 https://academ

ic.oup.com
/abbs/article/47/1/53/1755405 by guest on 20 April 2024



It was demonstrated that the depletion of TAZ in HCC1937 breast
cancer cell line dramatically inhibited tumor growth [90]. TAZ over-
expression promotes and TAZ knockdown inhibits breast cancer cell
migration and invasion [91,92]. The expression level of TAZ is higher
in breast CSCs than that in differentiated breast cancer cells. Knock-
down of TAZ in breast CSCs inhibits migration and metastasis.
Over-expression of TAZ in differentiated breast cancer cells induces
migration and metastasis [53]. Consistently, TAZ over-expression
not only promotes migration, but also induces EMT in MCF10A
[93]. TAZ promotes breast cancer cell migration, invasion, and
EMT predominately through interacting with TEADs [22,83,89,93].
The TAZ/TEAD complexes induce the transcription of AREG to pro-
mote cell migration. Knockdown of AREG partially reduces the TAZ-
dependent migration. Moreover, the expression of TAZ and AREG is
positively correlated in breast cancer tissues [93]. Our previous study
showed that TAZ increases the protein stability of KLF5, which in turn
promotes the FGF-BP gene transcription and tumor growth [90].

TAZ also promotes breast cancer drug resistance, a major obstacle
in breast cancer chemotherapeutics [94,95]. The Hippo pathway plays
an important role in drug resistance of breast cancer [25,53,94,96,97].
Taxol (paclitaxel) is a first-line chemotherapeutic drug used for breast
cancer [96]. TAZ is necessary for Taxol resistance in human breast
cancer cells [96]. TAZ contributes to Taxol resistance by inducing
the transcription of Cyr61 and CTGF [96]. In addition, TAZ also
causes the doxorubicin resistance in breast cancer cells [52].

Studies about TAZ upstream regulators also support that TAZ is an
oncogene in breast cancer (Fig. 2). NPHP4, a known cilia-associated
protein, interacts with LATS1 and inhibits TAZ and YAP phosphoryl-
ation. Knockdown of NPHP4 inhibits breast cancer cell proliferation
[98]. NPHP9, another nephronophthisis family member, competes
with 14-3-3 to bind with TAZ and induces TAZ nuclear translocation.
Knockdown of NPHP9 inhibits the TAZ-dependent breast cancer cell
proliferation [99]. The PTEN tumor suppressor promotes TAZ protein
degradation through the PI3K/AKT/GSK3 pathway [100]. In
MCF10A, knockdown of PTEN induces EMT [100]. EMILIN2, an
extracellular matrix protein, inhibits the TAZ activity and breast cancer
cell motility [101]. Inhibition of geranylgeranylation of Gβγ and RhoA
enhances phosphorylation of MST1/2 and LATS1, inhibits the activa-
tion of TAZ, and reduces the breast cancer cell migration [92].

The Hippo pathway regulates breast cancer stem cells

Substantial evidence supports that Hippo pathway plays a crucial role
in regulation of stem cell self-renewal and differentiation. Both YAP
and TAZ are required for maintaining mouse and human embryonic
stem cells [23,102–104]. In breast cancer, TAZ has been shown to play
an essential role in maintaining CSCs in vitro [55]. Over-expression of
TAZ in MCF10A cells promotes mammosphere formation and
knockdown of TAZ inhibits mammosphere formation [52]. Inhibition
of geranylgeranylation of Gβγ and RhoA inhibits the activation of
TAZ and reduces the self-renewal of breast CSCs [105]. This pheno-
type can be rescued by over-expressing TAZ-S89A, a constitutive ac-
tive TAZ [105]. Interestingly, EMT can activate TAZ through
Scribble, which is required for MST2 to interact with LATS/TAZ
complex, and increase self-renewal of breast CSCs [52].

Summary and Perspective

Overwhelming evidence supports the critical role of Hippo signaling
in breast cancer development. YAP and TAZ, two core components of
the Hippo pathway, promote breast cancer cell proliferation, survival,

migration, and invasion. The therapeutic targeting of components of
the Hippo pathway is therefore highly promising for treating breast
and other cancers.

Although the Hippo pathway is well established to regulate breast
and breast cancer development, the function and mechanism of the
Hippo pathway have not been fully addressed. For examples, the
physiological and pathological roles of several key components,
such as MST1/2 and Mob, in breast and breast cancer development
have not been investigated in transgenic mouse models. The YAP/
TAZ upstream regulatory components of the Hippo pathway and
downstream target genes have not been completely identified. It
would be interesting to study the roles of these new components in
breast and breast cancer development. Additionally, the development
of breast and breast cancer is determined bymultiple factors, including
genetic factors and environmental factors. The crosstalk between the
Hippo pathway and other signaling pathways has not been completely
understood.

Nevertheless, the Hippo pathway could provide therapeutic tar-
gets for breast cancer treatment. Recent progresses in the discovery
of drugs specific for the Hippo pathway are encouraging. A number
of small molecules have been identified to regulate the hippo pathway
and inhibit tumor growth [55]. YAP-positive breast cancer cells are
sensitive to verteporfin, a YAP inhibitor that interferes with the inter-
action between YAP and TEADs [64]. VGLL4 also inhibits the
complex formation of YAP–TEAD. A peptide mimicking VGLL4
effectively suppresses tumor growth [106,107]. GPCRs also regulate
the Hippo pathway [12]. GPCRs are great candidates for anti-cancer
drug target [108].

In conclusion, the Hippo pathway plays critical roles not only in
mammary gland development but also in breast cancer. It is well estab-
lished that the Hippo pathway regulates mammary gland morphology
and differentiation, although the mechanism is still unclear. YAP may
have a context-dependent role in breast cancer. More studies are re-
quired to investigate the function and mechanism of the Hippo path-
way in mammary gland development and breast cancer. It is expected
that novel therapeutic approaches targeting theHippo pathway will be
developed to treat breast cancer.
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