
Review

Hippo signaling in stress response

and homeostasis maintenance

Beibei Mao1, Yuhao Gao1, Yujie Bai2, and Zengqiang Yuan1,*

1State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101,
China, and 2Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

*Correspondence address. Tel/Fax: +86-10-64867137; E-mail: zqyuan@sun5.ibp.ac.cn

Received 18 September 2014; Accepted 28 October 2014

Abstract

Co-ordination of cell proliferation, differentiation, and apoptosis maintains tissue development and

homeostasis under normal or stress conditions. Recently, the highly conserved Hippo signaling

pathway, discovered in Drosophila melanogaster and mammalian system, has been implicated as

a key regulator of organ size control. Importantly, emerging evidence suggests that Hippo pathway

is involved in the responses to cellular stresses, including mechanic stress, DNA damage, and oxi-

dative stress, to maintain homeostasis at the cellular and organic levels. The mutation or deregula-

tion of the key components in the pathway will result in degenerative disorder, developmental

defects, or tumorigenesis. The purpose of this review is to summarize the recent findings and dis-

cuss how Hippo pathway responds to cellular stress and regulates early development events, tissue

homeostasis as well as tumorigenesis.
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Introduction

Cell proliferation, differentiation, and death have been extensively
studied. However, how these processes cooperate together to maintain
homeostasis under physiological and pathological conditions is poorly
understood. The discovery of Hippo pathway may provide an import-
ant entry point to address this question.

Hippo pathway is a highly conserved signaling network that con-
trols cell proliferation, differentiation, and cell death. It has been first
defined in Drosophila by genetic mosaic screening that loss-of-func-
tion mutation of Hippo leads to a strong overgrowth phenotype [1].
Consistently, genetic inactivation of main components including
Warts [2], Hippo [3], Salvador, and Mats [4,5] resulted in robust tis-
sue overgrowth. As the major downstream effector of the Hippo path-
way [6], Yorkie (Yki) functions as an oncogene and regulates gene
transcription by interacting with the transcription factor Scalloped
(Sd) [7]. Interestingly, the components of Hippo pathway are highly
conserved in mammals. MST1/2 (Hpo orthologs), Sav1, LATS1/2
(Wts orthologs), and Mob1 (MOBKL1A and MOBKL1B, Mats
orthologs) constitute a kinase cascade that phosphorylates YAP/
TAZ (Yki orthologs) and promotes its binding with 14-3-3 and cyto-
plasmic retention. YAP/TAZ, in conjunction with TEAD1–4 (Sd

orthologs), mediate major physiological functions of the Hippo
pathway [8,9].

The Hippo pathway can be stimulated by multiple types of cellular
stress, including mechanical stress, DNA damage, and reactive oxygen
species (ROS) (Fig. 1). In this review, we will summarize recent ad-
vances in understanding how different cellular stress signals or stress
stimuli regulate Hippo pathway, and in turn, how the Hippo pathway
regulates tissue homeostasis under the cellular stresses.

Hippo Pathway and Stress Response

Mechanical stress

Biomechanic is recognized as an important regulator of development
and pathological abnormalities. For instance, tumor growth and
progression are slowed down in the soft microenvironment [10]. It
is also known that mesenchymal stem cells differentiate into adipo-
cytes on soft matrix whereas osteoblasts on stiff matrix [11]. Organs
and cells are perpetually subjected to mechanical stresses, including
stretching, strain, compression, and pressure arising from different
stiffness of extracellular matrices. YAP/TAZ are identified as sensors
and mediators of mechanical cues represented by the rigidity of the
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extracellular matrix (ECM), cell geometry, cell density, and the status
of the actin cytoskeleton [12,13].

Matrix stiffness not only controls the subcellular localization of
YAP/TAZ but also modulates their expression. YAP/TAZ localize to
the cytoplasm when cells are grown on a soft matrix, whereas when
cells are grown on a stiff matrix, YAP/TAZ translocate to the nucleus
and activate the transcription of proliferation-related genes. This regu-
lation requires Rho GTPase activity and tension of the actomyosin
cytoskeleton, but is independent of the Hippo/LATS cascade
[12,14]. Hippo pathway is also regulated by G-protein-coupled recep-
tor (GPCR) signaling. For example, lysophosphatidic acid stimulates
Gα12/13-coupled receptor to induce YAP/TAZ activity by inhibiting
LATS. In contrast, stimulation of Gs-coupled receptors by glucagon or
epinephrine activates Lats1/2 kinase activity, thereby inhibiting YAP
function. The Gα12/13-induced YAP/TAZ activation can be blocked
by the F-actin disrupting agent, Latrunculin A, suggesting that GPCRs
and RhoA act upstream of LATS to regulate YAP/TAZ [15]. Addition-
ally, different substrate stiffness also alters the expression of YAP/TAZ
in human trabecular meshwork cells [16,17]. Interestingly, remodel-
ing of the ECM is partially dependent on the YAP, as the activation
of YAP in cancer-associated fibroblasts enhances matrix stiffening
through promoting an extensive deposition of collagen [18].

Changes in ECM stiffness also affect cell spreading [11,19]. Cell
morphology is another important factor in the regulation of the
Hippo pathway. It is known that YAP/TAZ sense the changes of cell
geometry during cell proliferation regulation [20,21]. YAP/TAZ are
localized in the cytoplasm when a cell is plated on the small adhesive
micro-patterned surface, while the cell on a large adhesive micro-
patterned surface will have epithelial cell-like geometry with active
YAP/TAZ localized in the nucleus [12,22]. Cell morphology and
F-actin regulated phosphorylation of YAP, and the effects of F-actin
were suppressed by modulation of LATS [23].

Tensile forces are also well known to be involved in the regulation
of YAP/TAZ activity. Myosin motor proteins together with actin

filaments generate contractile forces and tension inside of cells,
which regulates the activity of YAP/TAZ to modulate the proliferation
status of cells [12,14]. Taken together, Hippo signaling plays a vital
role in the cellular adaption to the extracellular environments. How-
ever, there is still lack of in vivo evidence that mechanical stress af-
fects Hippo signaling.

Oxidative stress

Recently, multiple lines of evidence link Hippo pathway with oxida-
tive stress or ROS-initiated signaling pathway and various patho-
logical processes. MST1 is the first studied Hippo pathway
component that exerts vital effect on ROS-induced cell death and
ROS defense [24]. We first reported that MST1 was activated upon
oxidative stress and the activated MST1 kinase phosphorylated
FOXO3 and enhanced FOXO3-mediated Bim expression, leading to
neuronal cell death. Conservatively, Cst-1 (MST1 ortholog in worm)
also regulates lifespan through daf-16 (FOXO ortholog)-mediated
gene transcription in C. elegans [24]. Our group also reported that
MST1 is phosphorylated by protein kinase c-Abl at Tyr433 and in-
creases its interaction with FOXO3 and subsequently phosphorylates
FOXO3 to initiate oxidative stress-induced neuronal cell death [25,26].
Accordingly, in cancer cells, MST1 was reported to mediate cisplatin-
induced cell death. Upon cisplatin treatment, peroxiredoxin-I, a ROS
responsive protein, is specifically associatedwithMST1 and subsequently
induces apoptosis in U2OS cells [27].

YAP, the major Hippo downstream target, also mediated ROS-
triggered signaling. In murine hearts, YAP over-expression was
reported to protect cardiomyocytes against H2O2-induced cell death
[28]. In cardiomyocytes, YAP functions as a transcriptional
co-activator of FOXO1 that leads to the up-regulation of antioxidant
genes, such as catalase and MnSOD [29]. Recently, Zhou’s group
reported that the transcriptional level of YAP is regulated by GABP
(an Ets family member) in liver and YAP expression is reduced when

Figure 1. Stress response of Hippo pathway Mechanisms of Hippo pathway regulation bymechanical stress, DNAdamage, and oxidative stress. Arrows or blunted

ends indicate activation or inhibition, respectively. Dashed lines indicate unknown mechanisms.
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GABP is inactivated by oxidative stress, indicating that the reduced ex-
pression of YAP accounts for the weak oxidative stress defense [30].
Controversially, the protein levels of YAP in glioma cells are elevated
whereas phosphorylation levels are reduced when treated with Chae-
tocin, a histone methyltransferase inhibitor that is known to induce
ROS generation. In addition, the activated YAP coordinates with
p73 and p300/CBP to induce apoptosis in glioma cells [31].

Mitochondria are the major source and target of ROS among the
subcellular organelles. In Drosophila, over-expression of Yki up-
regulates the transcription of genes such as opa1-like (opa1) and mito-
chondria assembly regulatory factor (Marf), leading to mitochondrial
fusion and reduced ROS levels [32]. However, other than apoptosis
induction, moderate ROS levels can promote tumor progression
in vivo. In Drosophila imaginal epithelium, the combination of Ras
activation and mitochondrial dysfunction stimulates ROS production
and subsequently inactivates Hippo pathway in JNK-dependent man-
ner, as well as drives non-autonomous tumor progression [33]. Taken
together, key components of the Hippo pathway participate in ROS-
mediated cell death or ROS scavenge in a variety of species and organs
as well as the subcellular organelles.

DNA damage

The genomic DNA is constantly exposed to various genotoxic insults,
including UV radiation and oxidative stress. Prevention and repair of
DNA damage are critical for the maintenance of genomic integrity and
cell survival. The latest work in hematological cancer reveals the role of
Hippo pathway in DNA damage-induced apoptosis. Unlike epithelial
cancer in which YAP is amplified and functions as an oncogene, the mul-
tiple myeloma has been found to contain a specific deletion in YAP gene
locus with DNA damage. Re-expression of YAP induces apoptosis and
reduces proliferation, which is mediated by stabilization of p73 and in-
creased expression of its pro-apoptotic downstream targets. In addition,
MST1 inactivation increased YAP protein levels and induced a robust
apoptotic response [34]. Consistently, p73 is stabilized by YAP protein
in HCT116 and H1299 cells upon cisplatin-induced DNA damage [35].
DNA damage also stabilizes YAP protein through PML-mediated su-
moylation and ubiquitination, which reinforces YAP’s transcriptional
co-activation and induces p73-dependent apoptosis [36].

In contrast, cisplatin induces SIRT1-mediated deacetylation of YAP,
which promotes the nuclear localization and transcriptional activation as
well as drug resistance in hepatocarcinoma [37]. Accordingly, down-
regulation of MST1 by Hsp70 mediates cisplatin resistance in prostate
cancer cells [38]. In addition to chemotherapeutic drug resistance,
YAP activation also renders cancer cells resistant to UV or gamma-
radiation-induced apoptosis. It has been reported that YAP enables
cells to enter mitosis with un-repaired DNA through driving insulin-
like growth factor-2 (IGF-2) expression and Akt activation in response
to radiation [39]. It has also been reported that YAP protects keratino-
cytes fromUV irradiation by binding and stabilizing the pro-proliferative
DNp63a isoform in a JNK-dependent manner [40]. Therefore, the bio-
logical outcomes of YAP activation in response to DNA damage are de-
pendent on the downstream effectors, such as p73, p63, and other
transcription factors. These conflict results suggest that Hippo pathway
is a double-edged sword in response to DNA damage and might exert a
tight control on DNA damage response in different cell contexts.

Hippo Signaling and Homeostasis

Cellular homeostasis is a process that cell adapts itself to a number of
environmental factors, including pH, membrane potential, nutrients,

oxygen, and ROS. In terms of tissue or whole organ, the coordination
among cell proliferation, differentiation, and death is essential for
homeostasis under physiological and pathological conditions. During
the process of development, cell proliferation is required for growing
organ and body size; meanwhile, proper cell fate determination will
ensure the appropriate function of tissue and organs. When the bal-
ance is disrupted (as a result of external perturbations and insults),
the body engages in a stress response that aims to restore homeostasis
at different levels (systemic, tissue, and cellular) [41]. Recently, emer-
ging evidence showed that Hippo pathway plays an important role in
the homeostasis maintenance through regulating the cell proliferation,
progenitor renewal and differentiation, and stress-induced cell apop-
tosis. The current knowledge of the in vivo roles of Hippo pathway
is briefly discussed below.

Nervous system

In nervous system, YAP and TEAD play critical roles in regulating
neural progenitor cell number by affecting proliferation, fate choice,
and cell survival. In Drosophila melanogaster, Hippo and Warts
are required for the maintenance of Drosophila sensory neuron den-
drites incooperation with polycomb proteins [42]. During chick neur-
al tube development, gain of function of YAP and TEAD results in a
marked expansion of the neural progenitor through inducing cyclin
D1 transcription and a decreased differentiation by suppressing
NeuroM expression. Consistently, loss of YAP and TEAD leads to
the increased apoptosis and premature neuronal differentiation [43].
InXenopus, YAP is required for the expansion of Sox2-positive neural
plate progenitors and Pax3-positive neural crest progenitors at
the neural plate border and for maintaining them in an undifferenti-
ated state [44].

Consistent with the result in chick, YAP modulates the prolifer-
ation of mouse neural progenitor cell through transcriptional regula-
tion of cyclin D1. Our group showed that BMP2 induces Smad1/4
activation that competes with YAP for the interaction with TAED1
and inhibits YAP’s cotranscriptional activity during neural progenitor
division [45]. Cappello et al. [46] reported that knockdown of FAT4
or DCHS1 promoted neural progenitor cell proliferation and malpo-
sitioning of cells in the development of cerebral cortex by decreasing
the phosphorylation of YAP, which revealed a novel upstream signal-
ing of YAP/TAZ during brain development. Moreover, mechanistic
studies revealed that motor neuron differentiation of human pluripo-
tent stem cells (hPSCs) was regulated by stiffness-dependent Hippo/
YAP activities [47]. In sum, YAP/TEAD are critical for neuronal pro-
genitor cell proliferation and development [48].

Heart

Hippo/YAP pathway was found to play essential roles in the regula-
tion of heart development and postnatal cardiomyocyte regeneration
and apoptosis. In accordance with that Hippo pathway suppresses
proliferation in cancer cells, Heallen et al. [49] found that inactivation
of Mst1/2, Sav1, and Lats2 resulted in enlarged embryo hearts due to
increased cardiomyocyte proliferation. Consistently, cardiac-specific
over-expression of MST1 in transgenic mice increased caridomyocytic
apoptosis and led to dilated cardiomyopathy [50], whereas over-
expression of a dominant-negative MST1 prevented myocardial in-
farction (MI)-induced myocyte apoptosis, fibrosis, and preserved sys-
tolic contraction [50,51]. Similar to MST1, LATS2 over-expression
led to heart dysfunction and reduced heart size in mice at 5 months
of age. Inhibition of endogenous LATS2 by over-expression of its
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dominant negative form resulted in heart hypertrophy both at baseline
and under pressure overload [52].

As the major target of Hippo pathway, the role of YAP in the devel-
opment of cardiomyocyte diseases has recently been extensively studied.
Fetal YAP inactivation caused marked, lethal myocardial hypoplasia
and decreased cardiomyocyte proliferation, whereas fetal activation of
YAP stimulated cardiomyocyte proliferation [53]. Three independent
studies showed that cardiomyocyte-specific inactivation of YAP caused
myocyte apoptosis, dilated cardiomyopathy and premature death. Con-
versely, forced expression of a constitutively active form of YAP in the
adult heart stimulates cardiac regeneration and improves contractility
after MI [28,54,55]. In addition, Wang et al. [56] found that
cardiomyocyte-specific transgene of human YAP induced cardiac
hypertrophy and increased fetal gene expression in the heart of 3
months old mice. In contrast, von Gise et al. [53] reported that YAP1
stimulates heart growth through promoting cardiomyocyte prolifer-
ation but not hypertrophy in postnatal cardiomyocytes. The mechanis-
tic controversy might be resulted from different techniques. Wang et al.
used YAP transgenic mice, whereas vonGise et al. used retro-orbital de-
livery of Ad:Tnnt2-Cre to achieve YAP conditional knockout. These
findings suggest that YAP is critical for heart homeostasis.

Ongoing studies will explain how YAP regulates heart growth and
cardiomyocyte proliferation. Hippo/YAP directly interact with
β-catenin on Sox2 and Snai2 genes. YAP could also increase the abun-
dance of β-catenin by activating IGF signaling which led to the inacti-
vation of GSK3β during embryonic cardiomyocyte proliferation [57].
Additionally, microarray data indicated that YAP transcriptionally
regulates the expression of numerous cell cycle-related genes, which
contributes to the function of YAP in cardiomyocyte regeneration
[54,55]. Modulating YAP activity might therefore provide a novel
therapeutic strategy for heart diseases.

Liver

Liver is the extensively studied organ in mammals to investigate the
role of Hippo pathway. In YAP transgenic mice, the liver size is nearly
three times bigger than normal [58]. When mice lack the Hippo path-
way upstream regulators (Mst1/2 [59], Nf2 [60], WW45 [61], and
Sav1 [59]), YAP showed reduced phosphorylation level and increased
nuclear localization. Histological and biochemical analysis showed
that the expanded liver size is mainly due to increased cell number ra-
ther than cell size [58]. Mechanistically, YAP binds to TEAD family
members to initiate the transcription of many target genes such as mi-
totic kinases, cell-division-associated proteins, and DNA replication
proteins [62]. In mice, activated YAP promotes the proliferation of
oval cells, a progenitor population of livers, which could differentiate
into hepatocytes and biliary cells.

During liver regeneration, Hippo pathway also functions as a
downstream target of integrin-linked kinase (ILK), which mediates
the transmission of ECM signaling to cells and maintains the normal
liver size. When ILK is mutated during partial hepatectomy, YAP is
activated and promotes hepatocyte proliferation [63].

Recently, a research by Camargo’s group showed that YAP’s acti-
vation in hepatocytes leads to a progenitor-phenotype clonal out-
growth. Under normal conditions, YAP is inhibited by Hippo
pathway to maintain the hepatocyte status [61]. However, when
Hippo/MST are inactivated or YAP is over-expressed under patho-
logical conditions, Notch signaling associated genes are transcription-
ally upregulated, which promotes the transition of normal hepatocytes
to hepatic progenitors [64]. The research linked Hippo pathway to the
phenotypic plasticity in mature hepatocytes, which might be impli-
cated in the treatment of liver diseases by targeting Hippo pathway.

Skin

The balance between proliferation and differentiation of progenitors
controls the development and homeostasis of the epidermis. Zhang
et al. [65] demonstrated that YAP over-expression causes hair pla-
codes to evaginate into epidermis rather than invaginate into dermis.
YAP also expands basal epidermal progenitors, promotes prolifer-
ation, and inhibits terminal differentiation. The phenomenon is sup-
ported by the observation that over-expression of a C-terminally
truncated YAP mutant in the basal epidermis of transgenic mice
caused marked expansion of epidermal stem/progenitor cell popula-
tions [66]. Similarly, the long-term effect of YAP activation leads to
extensive proliferation of basal progenitors and results in squamous
cell carcinoma-like tumors [67]. As an upstream regulator of Hippo
pathway, WW45 deletion caused defects in terminal differentiation
of epithelial progenitor cells [68]. Surprisingly, mice with skin-specific
deletion of Mst1/Mst2 or Lats1/2 displayed no abnormalities in mice
up to 5 months of age, suggesting that YAP might be regulated by al-
ternative signals in keratinocytes that might be independent of the
canonical Hippo pathway kinases [67].

Lung

The impact of Hippo pathway on lung development was first
studied in TAZ-deficient mice. TAZ-deficient mice showed abnormal
alveolarization during lung development and airspace enlargement
mimicking emphysema in adult mice [69]. Yet early in 2004, TAZ
was found to interact with thyroid transcription factor-1 to activate
the expression of surfactant protein C [70]. Mice lacking Mst1/2 in
the respiratory epithelium exhibited perinatal mortality with respira-
tory failure [71].

Kidney

In addition to lung developmental defect, TAZ knockout mice show
renal cysts that are similar to the human polycystic kidney disease
[72–74]. Consistently, mice with conditional knockout of YAP in kid-
ney have reduced nephrogenesis and defective morphogenesis, in
which YAP activity is needed for proper expression of a group of
genes that control cell signaling and cell structure [75]. Ablation of
Cdc42, a Rho GTPase, led to a reduced YAP-dependent gene expres-
sion and a defective nephrogenesis through decreasing nuclear local-
ization of YAP. Thus, YAP responds to Cdc42-dependent signals in
nephron progenitor cells to activate a genetic program required to
shape the functional nephron [75].

Hippo Signaling in Human Cancers

Given the essential roles of Hippo pathway in controlling cell prolifer-
ation, stress response, and organ size, deregulated Hippo signaling in-
cluding inactivation of the upstream kinase or hyperactivation of YAP/
TAZ causes the destruction of tissue homeostasis and eventually
tumorigenesis. Hereditary or sporadic inactivating mutations in
neurofibromatosis tumor suppressor NF2 (Merlin) promotes brain
tumor development [76]. Other than NF2, DNA mutations in the
components of the Hippo pathway are rare in human cancers. How-
ever, deletions of WW45 were identified in two renal cancer cell lines
[77]. Loss-of-function mutation of Mats1 was found in human skin
melanoma andmouse mammary gland carcinoma [5]. Besides the mu-
tation of coding sequence, nonmutational epigenetic modification is
another prevalent mechanism silencing Hippo pathway. Promoter
methylation ofMst1 was detected in soft tissue sarcomas [78], and hy-
permethylation of Lats1/2 in astrocytoma and breast cancers has also
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been reported [79,80]. Different with the upstream kinases, gene amp-
lification is common for YAP and TAZ. Amplification of the YAP gene
locus has been reported in a wide range of human cancers, including
oral squamous-cell carcinomas, medulloblastomas carcinomas of
lung, pancreas, esophagus, liver, and mammary gland [81–85].
TEAD4 has also been found to be amplified in various cancers [86].
In line with the mutation or amplification of Hippo pathway compo-
nents in human cancers, the mouse models with inactivation of the up-
stream kinase or over-expression of YAP/TAZ display spontaneous
tumors (Table 1).

Conclusions and Perspectives

Hippo pathway plays key roles in organ size control, regeneration, and
cancer development. The mutation or deregulation of key components
in the pathway will result in developmental defects, degenerative dis-
order, or tumorigenesis. The Hippo pathway has gained significant at-
tention in the past few years owing to its broad importance in animal
development.

Although a large amount of studies have uncovered the signaling
transduction and function of Hippo pathway, many questions still re-
main to be answered. For example, whether Hippo pathway responds
to other stresses such as ER stress and, metabolic stress. Why Hippo
pathway shows a different response to DNA damage in different cell
context? Does Hippo pathway participate in glucose homeostasis,
such as diabetes and hypoglycemia? Since Hippo pathway is critical

for tumorigenesis, what is the role of Hippo pathway in angiogenesis
within the solid tumors? In the network of proliferation, differenti-
ation, and cell death, how Hippo pathway coordinates with the
other signals? How Hippo pathway is regulated by tissue-specific up-
stream regulators? Tissue-specific drugs for disease therapy need to be
explored to stimulate or inactivate Hippo pathway in different tissues
or organs. This might be achieved by the identification of beneficial
downstream genes regulated by Hippo/YAP, which may yield more
tissue-selective drug targets. Alternatively, localized or cell-type specif-
ic gene delivery technologies may also be used to achieve tissue-specific
Hippo activation or inhibition. Thus, further research is necessary to
address these issues, which will be significant for the understanding
the occurrence of degenerative disorder and tumorigenesis.
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