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MiR-29a/b/c regulate human circadian gene hPER1 expression by targeting its 30UTR
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Several essential biological progresses in mammals are
regulated by circadian rhythms. Though the molecular
mechanisms of oscillating these circadian rhythms have
been uncovered, the specific functions of the circadian
genes are not very clear. It has been reported that knocking
down circadian genes by microRNA is a useful strategy to
explore the function of the circadian rhythms. In this
study, through a forward bioinformatics screening ap-
proach, we identified miR-29a/b/c as potent inhibitors for
the human circadian gene hPER1. We further found that
miR-29a/b/c could directly target hPER1 30untranslated
region (UTR) and down-regulate hPER1 at both mRNA
and protein expression levels in human A549 cells. Thus,
our findings suggested that the expression of hPER1 is
regulated by miR-29a/b/c, which may also provide a new
clue for the function of hPER1.
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Introduction

Circadian clock orchestrates the intrinsic period of �24 h in
mammals [1]. The suprachiasmatic nuclei of the hypothal-
amus functions as the key circadian clock drives endogenous
rhythms, which is regulated by transcriptional and post-
transcriptional factors leading to molecular oscillation [2].
The circadian circuit is composed of the negative and posi-
tive loops which form the basic construction of molecular
circadian oscillation [3,4]. In the positive feedback process,
circadian locomotor output cycles kaput/aryl hydrocarbon
receptor nuclear translocator-like heterodimer (also known
as CLOCK/BMAL1) plays a significant role in circadian os-
cillation by binding to E-box in circadian genes to activate
the transcription of cryptochromes (CRYs) and period

(PERs) [4,5]. In the negative feedback, the phosphorylated
CRYs and PERs enter the nucleolus to suppress the tran-
scriptional activity of CLOCK/BMAL1 heterodimer.

PERs genes, which were first found in Drosophila, play
important roles in circadian clock. The mutation of PERs
genes can alter the circadian rhythmic period of Drosophila,
so they were named as period. Human period genes (hPERs)
were cloned by a polymerase chain reaction (PCR) method.
The analysis of a human genomic draft has identified three
hPERs, named hPER1, hPER2, and hPER3. hPER1 gene is
not only involved in the regulation of the physiological
rhythm, but also related to the regulation of cell cycle, DNA
damage repairing, and tumor progress [6].

MicroRNAs (MiRNAs) are small, non-coding RNAs en-
dogenously expressed with 19–25 nucleotides in length. By
binding to the complementary sites in their target genes,
miRNAs post-transcriptionally modulate the target gene ex-
pression [7]. MiRNAs have been shown to be involved in
many cellular processes, including the control of the circa-
dian clock genes by binding to their 30untranslated region
(UTR) [8]. The role of miRNAs in the regulation of circadian
clock has been well investigated. The miR-206 was demon-
strated to regulate the circadian clock in the skeletal muscle.
The miR-192/194 cluster was identified as a powerful nega-
tive regulator of the PERs family. The over-expression of
PERs results in an alteration of circadian rhythm. Recently, a
report revealed that miR-494 and miR-142-3p can target the
30UTR of BMAL1 in mouse. Therefore, the accumulating
data suggested that miRNAs might act as the potent regula-
tors of the circadian clock.

In this study, we explored the function of miRNAs in
the regulation of hPER1. By using a forward bioinformatic
algorithm, miR-29a, miR-29b, and miR-29c were identified
as potent regulators toward hPER1. It was also found that
their expressions significantly down-regulated the expres-
sion of hPER1 at both mRNA and protein levels in human
A549 cells.
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Materials and Methods

Cell culture and transfection
Human non-small-cell lung carcinoma-derived cell line
(A549), provided by Sichuan University (Chengdu, China),
were cultured in Dulbecco’s modified Eagle’s medium high-
glucose (Sigma-Aldrich, St Louis, USA) supplemented with
10% (v/v) fetal bovine serum under standard conditions at
378C in the humidified atmosphere containing 5% CO2.
Mimics of miR-29a/b/c or negative control (NC, Ruibo Bio,
Changzhou, China) were transfected into A549 cells with
Lipofectamine 2000 (Invitrogen, Carlsbad, USA), which
were marked as 29a, 29b, 29c, and NC, respectively. The
blank control group was marked as blank.

Luciferase assay
The human 30UTR of the hPER1 gene was amplified by
PCR and cloned into the pmiR-RB-REPORTTM (PMIR)
vector (Ruibo Bio) between the restriction enzyme cutting
sites of XhoI and NotI to construct pmiR-RB-REPORTTM-
30UTR (PMIR-30UTR) dual-luciferase reporter gene system.
The A549 cells were cultured in 96-well plates and were
transfected using Lipofectamine 2000 with 200 ng of either
PMIR-30UTR or PMIR control vector and 50 pmol of
miR-29a/b/c or NCs. At 24 h after transfection, the firefly
luciferase activity was measured using the Dual-Luciferase
Reporter Assay kit (Promega, Madison, USA). The experi-
ment was repeated at least three times.

MiRNA and hPER1 mRNA reverse transcription
RNA was isolated from the cells of the five different groups
using TRIZOL reagent (Invitrogen). One-step reverse-
transcription (RT) PCR was carried out. Each sample including
10 ng of total RNA was reverse transcribed to complemen-
tary DNA (cDNA) using RevertAid First Strand cDNA
Synthesis kit (Thermo Fisher Scientific, Waltham, USA).
The cDNA was applied for both miRNA and hPER1 gene
quantification. Five different groups of synthesized cDNA
were diluted to 1 : 10 and stored at 2208C prior to quantita-
tive real-time PCR (qPCR).

qPCR analysis
qPCR was performed in a CFX48 Real-Time PCR Detection
System (Bio-Rad, Hercules, USA), to measure the miRNA
expression and hPER1 mRNA expression. U6 was served as
the endogenous reference for miRNA expression. All reac-
tions were performed in triplicate with a calibrator control
derived from a pool of all cDNA samples and a non-template
control. PCR amplification efficiencies (85%–100%) for
each primer pair were calculated using a 10-log serial dilu-
tion of the calibrator sample and efficiency correction was
applied to the data during analysis. For quantification of

hPER1 gene expression, all five different groups of synthe-
sized cDNA were used. To identify miR-29a/b/c is truly
linked to the inhibition of hPER1, we also quantified the
human CRY1 gene expression in all five different groups as
unrelated transcripts control. All primer sets for mRNAs
crossed an exon–exon junction to avoid the amplification of
genomic DNA. Gene expression changes were quantified
using the delta–delta CT method. Data were normalized to
determine the relative fold changes by Equation 22DDCt. All
primers used are listed in Table 1. GAPDH were used as
controls for mRNA expression.

Western blot analysis
Protein expression levels were assessed by western blot ana-
lysis. In brief, cells were lysed in an ice-cold RIPA lysis
buffer, containing 100 mg/ml phenylmethylsulfonyl fluoride
(beyotime, China). Anti-hPER1 antibody (H-120) (1 : 1000;
Santa Cruz, Santa Cruz, USA) and HRP-labeled goat anti-
rabbit IgG antibody (1 : 20000; ZSGB-BIO, Beijing, China)
were used to detect hPER1. Anti-b-Actin antibody (1 :
1000; ZSGB-BIO) and HRP-labeled goat anti-rabbit IgG
antibody were used to detect b-actin which served as the
internal control.

Statistical analysis
All data were presented as mean+ standard deviation.
Statistical analysis was performed with SPSS software
(version 11.0, SPSS, Inc., Chicago, USA). The differences
between groups were analyzed by one-way analysis of
variance. P , 0.05 were considered statistically significant
(two-tailed).

Results

Bioinformatic algorithms prediction
The screening of miRNAs which are targeted hPER1 was
performed using bioinformatics algorithms TargetScan (http://
targetscan.org/). hPER1 was predicted as the putative target of
miR-29a/b/c using the bioinformatics algorithms TargetScan
(http://targetscan.org/) (Fig. 1).

Table 1. The primers used in qPCR for measuring the mRNA
expression

Primer name Primer sequence

hPER1 50-AAGTTCGTCTTCTGCCGTATC-30

50-AGGCGGAATGGCTGGTA-30

GAPDH 50-AACGACCCCTTCATTGAC-30

50-TCCACGACATACTCAGCAC-30

CRY1 50-GTTCGCCGGCTCTTCCA-30

50-CAAGATCCTCAAGACACTGAAGCA-30
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MiR-29a/b/c targeted hPER1 30UTR
To confirm hPER1 is the target of miR-29a/b/c, we con-
structed the hPER1 30UTR-luciferase reporter gene. The
results showed that over-expression of miR-29a/b/c signifi-
cantly inhibited the activity of the hPER1 30UTR-luciferase
compared with the NC (Fig. 2), which indicated that
miR-29a/b/c could directly target hPER1 30UTR.

MiR-29a/b/c down-regulated hPER1 expression at
mRNA level
To explore the regulatory effect of miR-29a/b/c on hPER1
gene expression, we examined the expression of hPER1 and

CRY1 mRNA in miR-29a/b/c over-expression A549 cells by
qPCR. The data showed that the expression of hPER1
mRNA was significantly decreased in the groups of
miR-29a, miR-29b, and miR-29c, compared with that in the
group of NC. No significant difference was observed in the
expression of CRY1 (Fig. 3).

MiR-29a/b/c inhibited hPER1 protein expression
To investigate the regulatory effect of miR-29a/b/c on
hPER1 protein expression, we examined hPER1 protein ex-
pression by western blotting in the five groups. The results
showed the down-regulation of hPER1 protein expression in

Figure 1. Putative-binding site of miR-29a/b/c in 30UTR of hPER1 as detected by TargetScan6.2.

Figure 2. MiR-29a/b/c targeted hPER1 30UTR (A)–(C) Relative luciferase activity was measured in A549 cells transfected with PMIR-30UTR or PMIR

vector (blank) and co-transfected with PMIR-30UTR or PMIR vector and miR-NC mimics (NC) or miR-29a/b/c mimics. Firefly luciferase activity was

normalized to Renilla luciferase activity. *P , 0.05 vs. cotransfected PMIR-30UTR and blank or NC group. **P , 0.05 vs. cotransfected PMIR vector and

blank or NC or miR-29a/b/c group.

Figure 3. MiR-29a/b/c down-regulated hPER1 expression at mRNA level (A)–(C) The relative expression of hPER1 and CRY1 mRNA in miR-29a/b/

c mimics and NC-transfected cells quantified by qPCR. *P , 0.05, **P . 0.1.
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Groups 29a, 29b and 29c compared with that in Group NC
and blank, which indicated that hPER1 may be a target gene
of miR-29a/b/c (Fig. 4).

Discussion

Using bioinformatic algorithms, we found that hPER1 was
predicted to be targeted by miR-29a/b/c through binding to
its 30UTR; nevertheless, no studies have been performed to
confirm that. Here, in this study, we first showed that
miR-29a/b/c can directly target 30UTR of hPER1 through
construction of a PMIR-hPER1-30UTR dual-luciferase
reporter gene system. Furthermore, in order to confirm
whether miR-29a/b/c can regulate hPER1, the expressions of
hPER1 mRNA as well as the protein were determined,
respectively. The results suggested that miR-29a/b/c down-
regulated the hPER1 at both mRNA and protein levels,
which uncovered that the core clock proteins were also
under post-transcriptional regulation by miRNA.

MiRNAs are small-non-coding RNA molecules that alter
gene expression at post-transcriptional level. Recently, it has
been reported that miRNAs could regulate the circadian
rhythm. MiR-219 and miR-132 have been shown to shorten
the circadian period and negatively regulate light-dependent
rhythm. Furthermore, miR-219 is a target of the CLOCK/
BMAL1 complex. It exhibits robust circadian rhythms of
expression, and the in vivo knockdown of miR-219 length-
ens the circadian period. MiR-132 is induced by photic
entrainment cues, modulates CLOCK gene expression, and
attenuates the entraining effects of light. Collectively, these
results suggested that miRNAs provide a mechanistic exam-
ination of their roles as effectors of pacemaker activity and
entrainment [9].

Indeed, involving miRNAs and circadian gene, a similar
regulatory network exists. MiR-182 was reported to be a
modulator of CLOCK and a feedback loop consisting of
miR-182 and CLOCK has been proposed. But the specific
interaction between the miR-182 and CLOCK has not been
clarified; therefore, the regulation of CLOCK by miRNAs
needs to be further studied [10]. It has been reported that

miR-142 regulates BMAL1 both in human and mouse cells.
It has also been suggested that miR-142 is transcriptionally
regulated by CLOCK/BMAL1 heterodimers only in a mouse
cell line (NIH3T3) [11]. Another research suggested that
miR-192/194 expression alters the circadian cycle, potential-
ly resulting from the regulation of the PER gene family. So
far, it cannot be confirmed whether miR-192/194 has other
targets besides the PER genes that assist in the control of
circadian clock [12].

In this study, both mRNA and protein expressions of
hPER1 gene were decreased by over-expression of miR-29a/
b/c. hPER1 is an important component of circadian clock in
human beings. Circadian rhythm and molecular oscillation
are both affected by the decrease of hPER1. Multiple signal-
ing pathways are involved in the modification of circadian
molecular oscillation [13]. Further exploration is needed
to determine whether hPER1 has an effect on circadian
rhythm, circadian molecular, and interactivity with other
circadian genes.

hPER1 is also an important gene related to human health.
Reduction of hPER1 is correlated with many diseases in-
cluding cortisol awakening response [14], psychosocial
stress-induced alcohol drinking [15], chronic myeloid leuke-
mia [16], and especially in cancer [17]. Furthermore, dis-
order of circadian rhythm may lead to disruption in sleep
[18], metabolism [19], cardiovascular [20], endocrine [21],
reproduction [22], cancer [23], and some biological progress
[24]. Here, we indicated that miR-29a/b/c could be a potent
inhibitor of human circadian gene hPER1. Further studies
will focus on whether miR-29a/b/c can act on some human
diseases through regulating hPER1. The detailed mechanism
by which this miRNA is capable of affecting the circadian
period still remains to be explored.
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miR-29a (29a), miR-29b (29b), or miR-29c (29c) transfected cells compared with those in the NC and blank control (blank) cells. *P , 0.05.
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