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14-3-3 Binding to Cyclin Y contributes to cyclin Y/CDK14 association
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Cyclin Y is a highly conserved cyclin among eumetazoans,
yet its function and regulation are poorly understood. To
search for Cyclin Y-interacting proteins, we screened a
yeast two-hybrid library using human Cyclin Y (CCNY) as
a bait and identified the following interactors: CDK14 and
four members of the 14-3-3 family (1, b, h, t). The inter-
action between CCNY and 14-3-3 proteins was confirmed
both in vitro and in vivo. The results showed that Ser-100
and Ser-326 residues in CCNY were crucial for 14-3-3
binding. Interestingly, binding of CCNY to 14-3-3 signifi-
cantly enhanced the association between CCNY and
CDK14. Our findings may add a new layer of regulation of
CCNY binding to its kinase partner.
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Introduction

Cyclin Y is a recently characterized member of the cyclin
family. It is highly conserved among eumetazoan species
[1], suggesting that Cyclin Y has important biological func-
tions. In 2010, Liu et al. [2] found that Cyclin Y is essential
for several developmental processes in Drosophila. Moreover,
cyclin Y null mutant is homozygous lethal with most mutant
animals arresting during pupal development. At the same
time, another group reported that Cyclin Y is necessary for tar-
geting presynaptic components to the axon in Caenorhabditis
elegans [3]. An intriguing finding is that Cyclin Y is required
in vivo for LRP6 phosphorylation, maternal Wnt signaling,
and Wnt-dependent anteroposterior embryonic patterning in
Xenopus [4].

The 14-3-3 proteins are a family of small acidic, dimeric
proteins that appear to be present in all eukaryotic organ-
isms. There are seven 14-3-3 isoforms in mammals: b, g, 1,
h, s, t, and z. All 14-3-3 proteins are highly conserved,
with �50% identity among amino acids both within and
across species [5]. Although the 14-3-3 proteins have no

detectable catalytic domain [6], they are involved in the re-
gulation of almost all biological processes via regulation of
hundreds of interacting proteins. The vast majority of
cellular-binding partners interact with 14-3-3 proteins in a
phosphorylation-dependent manner [7]. Two canonical
14-3-3 binding motifs have been defined as RSXpSXP and
RXXXpSXP (where R is arginine, S is serine, X is any amino
acid, pS is phosphoserine, and P is proline). Phosphothreonine
(pT) could be replaced with pS [8,9]. The different regula-
tory role of 14-3-3 proteins can be grouped into three major
modes of action [5,10,11]: (i) Directed conformational
changes in the target protein. The highly a-helical nature of
the 14-3-3 proteins is rigid, which upon binding to target
protein leads to deformation of the target protein with little
or no change in the structure of the 14-3-3 dimer [11]. By
this way, 14-3-3 binding can alter the intrinsic catalytic ac-
tivity of the target protein, either inhibiting or augmenting
its function; (ii) Masking. 14-3-3 Proteins act as masks to
physically occlude sequence-specific or structural features of
their targets, thus to modify the target protein localization
[12] or to protect the target from other modifications such as
dephosphorylation [13]; (iii) Scaffolding. 14-3-3 Dimer can
bridge two proteins together and serve as a phosphorylation-
dependent scaffold protein [14].

Human Cyclin Y (CCNY) protein is composed of 341
amino acids, with the 143–249 amino acid residues forming a
‘cyclin fold’, a stack of five a-helices termed the cyclin box
[1,15]. Conventional cyclins require two cyclin folds for their
activity; it is unknown how CCNY binds to and activates its
kinase partner with only a single cyclin fold [1,15]. We have
previously reported that the interaction between CCNY and
its kinase partner CDK14 requires the typical CDK-cyclin-
binding domains, the ‘PFTAIRE’ motif in CDK14, and the
cyclin-fold domain in CCNY. In addition, it also requires add-
itional regions outside the cyclin box (85–136 aa and 244–
341 aa) [16], implying the involvement of other regulatory
mechanisms. Data in the present paper demonstrated that the
binding of 14-3-3 proteins to CCNY enhanced the association
between CCNY and CDK14, adding a new layer of regulation
of CCNY binding to its kinase partner.
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Materials and Methods

Yeast two-hybrid assay
The yeast two-hybrid screening and yeast two-hybrid inter-
action assays were carried out as described previously
[17,18]. A human adult brain LexA two-hybrid complemen-
tary DNA (cDNA) library (Clontech, Mountain View, USA)
in which cDNA fragments inserted in pB42AD were used for
two-hybrid screening. pGilda-CCNY (LexA–CCNY fusion)
was used as a bait to screen the library. Saccharomyces cerevi-
siae strains used were EGY48 (MATa, trp1, ura3, his3, leu2,
lexAop(�6)-leu2) and CJY151 (MATa, his3, trp1, LexAop(�6)-
leu2, LexAop(�8)-lacZ), which was generated by integrating
the lacZ reporter and its upstream modulation sequence to the
strain EGY48. The pGilda was used for the expression of
LexA-tagged fusion proteins. The pB42AD was used for the
expression of HA fusion proteins with the B42 activation
domain under the control of GAL1 promoter. The pSH17-4
was a positive control plasmid for LexA–AD fusion protein.
The pRFHM1 was a negative control plasmid for expression
of a LexA–human lamin C fusion protein. Filter assays
for b-galactosidase activity were performed as described
previously [19]. X-gal was used as a substrate. Colonies
(2 mm diameter) on filters were frozen with liquid nitrogen
for 1 min, then incubated with X-gal (334 mg/ml) at 308C.

Plasmid construction
For over-expression in HEK-293T cells, human CCNY open
reading frame (ORF) was cloned into a pMYCN3 or
pEGFPN3 vector, where a C-terminal Myc-tag or GFP-tag
was fused to CCNY [20]. Human CDK14 ORF was cloned
into a pEGFPN3 vector. Site-directed mutagenesis of CCNY
was generated by polymerization chain reaction amplifica-
tion using a mutagenesis kit (Strategene, Wilmington,
USA). Human 14-3-31, b, h, or t ORF was cloned into a
pcDNA3.1-N-Flag vector.

Cell culture
All cells in this study were cultured in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum
(Invitrogen, Carlsbad, USA.) and penicillin/streptomycin
at 378C and 5% CO2. Cells were transfected by using
LipofectamineTM 2000 (Invitrogen) according to manufac-
turer’s instruction. An equal amount of empty vectors was
used as control in all experiments.

Co-immunoprecipitation and immunoblotting
Transiently transfected HEK-293T cells were collected 24 h
post-transfection, and then lysed with 1%-Trition lysis
buffer [50 mM Tris, pH 7.5, 150 mM NaCl, 1% TritonX-
100, 1 mM EDTA, complete protease inhibitor cocktail
(Roche, Basel, Switzerland), and PhosSTOP phosphatase

inhibitor (Roche)]. The same amount of total proteins was
incubated with anti-Myc beads for 3 h at 48C. After washing,
the bound proteins were eluted by boiling the beads and
separated on sodium dodecyl sulfate-polyacrylamide gel
electrophoresis. Antibodies used in the present study were
anti-14-3-3b (SC-25276; Santa Cruz, Santa Cruz, USA);
anti-FLAG (A2220; Sigma, St Louis, USA); anti-C-MYC
(C3956; Sigma); and anti-GFP (11814460001; Roche).

Subcellular localization
Transfected HEK-293T cells were plated at a low confluency
close to 30% on coverslips in a 12-well plate. Twenty-four
hours later, the cells were washed with phosphate buffered
saline (PBS) and fixed with 4% paraformaldehyde for
10 min at room temperature, and then washed with PBS. To
visualize nuclei, the cells were stained with 1 mg/ml 40,
6-diamidino-2-phenylindole (DAPI) for 5 min, and then
washed with PBS. Coverslips were mounted and observed
under a Zeiss confocal microscope.

Results

CCNY interacts with 14-3-3 proteins in vitro and in vivo
To identify CCNY-interacting proteins, a full-length human
CCNY was used as a bait to screen a human brain Lex-A two-
hybrid library. In addition to CDK14, which has been shown
to be a kinase partner activated by CCNY, four 14-3-3 iso-
forms (1, b, h, t) were also identified. Their interactions were
further validated by direct yeast two-hybrid analysis. The
yeast CJY151 co-transformed with pGilda-CCNY and
pB42AD-14-3-3 plasmids grew well on SC Gal His2, Trp2,
Leu2 medium and showed b-galactosidase activity in 4-h in-
cubation at 308C, confirming the CCNY-14-3-3 interaction
in vitro (Fig. 1A). To further verify the physical interaction
of these proteins in vivo, a co-IP assay was performed by
using mouse brain extracts. The mouse brain extracts were
immunoprecipitated by an anti-14-3-3b antibody, and the
presence of CCNY was investigated by western blotting.
CCNY was clearly detected in the 14-3-3b immunoprecipi-
tant, but not in that of IgG control (Fig. 1B), confirming that
CCNY interacted with 14-3-3 proteins in vivo.

Both N- and C-terminal regions of CCNY are required
for 14-3-3 binding
CCNY contains a single cyclin box domain (143–243 aa),
which is required for binding to CDK14, and long N- and
C-terminal regions outside the cyclin box domain. To inves-
tigate the regions of CCNY that are necessary for interaction
with 14-3-3 proteins, we constructed various deletion
mutants of pGilda-CCNY for interaction analysis between
CCNY and 14-3-3 proteins using a yeast two-hybrid system
(Fig. 2A). The yeast strains harboring CCNY or CCNY
mutants with 14-3-3b were incubated on leucine containing
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media for b-galactosidase activity assay. Results showed
that CCNY lacking 1–54 aa retained the ability to interact
with 14-3-3b, but CCNY lacking 1–83 aa was unable to
interact with 14-3-3b, suggesting that the 55–83 amino acid
residues were required for 14-3-3 binding. Furthermore,

CCNY lacking 311–341 aa in the C-terminus did not inter-
act with 14-3-3b either, indicating that this region was also
required for 14-3-3 binding (Fig. 2B). We further examined
the growth abilities of the yeast strains on leucine-depleting
media. Interaction between CCNY and 14-3-3b resulted in

Figure 1. CCNY interacts with 14-3-3 proteins (A) Interaction between CCNY and four 14-3-3 isoforms (1, b, h, t) in a yeast two-hybrid system. The

pGilda-CCNY and pB42AD-14-3-3 plasmids were co-transformed into CJY151. pSH17-4 containing LexA-AD fusion protein was used as a positive control.

The interactions were analyzed using a b-galactosidase activity assay on SC Gal His2, Trp2, Leu2 media. (B) Interaction of CCNY with 14-3-3b in vivo.

Lysates from mouse brain were prepared and immunoprecipitated by mouse monoclonal anti-14-3-3b or IgG as a control. The immunoprecipitates were blotted

with an anti-14-3-3b antibody or anti-CCNY antibody. The mouse brain lysates were probed with an anti-14-3-3b antibody as a loading control.

Figure 2. Mapping regions of CCNY that interact with 14-3-3 proteins (A) Schematic representation of CCNY deletion. (B) Interactions of CCNY

deletion mutants with 14-3-3b in a yeast two-hybrid system. The pGilda-CCNY deletion mutants were co-transformed with pB42AD-14-3-3b into CJY151.

The protein–protein interactions were analyzed using a b-galactosidase activity assay on SC Gal His2, Trp2 media. (C) Interactions between CCNY

deletion mutants and 14-3-3b were analyzed using a growth ability assay. The yeast strains shown in (B) were streaked onto SC Gal His2, Trp2 Leu2 plates

and incubated at 308C for 3 days. Plasmid pSH17-4 containing a LexA–AD fusion was used as a positive control and pRFHM1 containing a LexA–human

lamin C fusion was used as a negative control.
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growth of the yeast strains on Leu2 media. The growth
ability assay confirmed the results of b-galactosidase activity
assay (Fig. 2C). These data indicated that both N- and
C-terminal regions outside the cyclin box were required for
the interaction between CCNY and 14-3-3 proteins.

The Ser-100 and Ser-326 are crucial for the interaction
between CCNY and 14-3-3 proteins
The 14-3-3 proteins mostly bind to their ligands through pS/
pT motifs with a few exceptions [21]. We performed a co-IP
assay to examine whether the interaction between CCNY
and 14-3-3 proteins is phosphorylation-dependent. As
shown in Fig. 3A, when the cell lysates were pre-treated
with lambda protein phosphatase, Flag-14-3-3b was hardly
pulled down by CCNY-Myc (Fig. 3A), indicating that
dephosphorylation would abolish 14-3-3 binding to CCNY.
We then searched the N- and C-terminal regions of CCNY
for 14-3-3 binding sites, and found four putative 14-3-3
binding sites at Thr-67, Ser-83, Ser-100, and Ser-326
(Fig. 3B) based on the two canonical 14-3-3 binding phos-
phopeptide motifs: RSXpSXP and RXXXpSXP.

To determine whether these predicted residues can
provide docking sites for 14-3-3 proteins, we mutated the
Thr and/or Ser residues to non-phosphorylatable Ala. Co-IP

assay and western blotting revealed that T67A and S83A
mutations did not affect the association of CCNY with
14-3-3b. However, the mutation S100A or S326A greatly
reduced the association of CCNY with 14-3-3b. Double mu-
tation of Ser-100 and Ser-326 completely abolished 14-3-3
binding with CCNY (Fig. 3C), suggesting that the phos-
phorylation of CCNY at Ser-100 and Ser-326 was critical
for 14-3-3 binding. Phosphorylation at Ser326 has been
detected in both nuclear and cytoplasmic fractions [22,23].
Our unpublished data also showed that Ser-100 and Ser-326
of CCNY were phosphorylated. Sequence alignment showed
that the residues Ser-100 and Ser-326 were highly conserved
among eumetazoans, from hydra to human (Fig. 3D), sug-
gesting that the interaction between CCNY and 14-3-3 pro-
teins was evolutionary conserved.

Binding to 14-3-3 does not alter membrane localization
of CCNY
We next investigated the regulatory role of 14-3-3 binding in
CCNY. In some cases, 14-3-3 proteins are implicated in
regulating the subcellular localization of their target proteins
by acting as a mask [6]. Ectopically expressed CCNY is
enriched at the plasma membrane due to myristoylation at
N-terminal Gly-2 [16]. We investigated whether 14-3-3

Figure 3. Identification of 14-3-3 binding sites on CCNY (A) 14-3-3b associated with phosphorylated CCNY. CCNY-Myc and Flag-14-3-3b were

co-transfected in HEK-293T cells. Cell lysates were pre-treated with or without lambda protein phosphatase for co-IP assays. (B) Prediction of 14-3-3

binding sites on CCNY. (C) Co-IP assays of the interactions between CCNY mutants and 14-3-3b. (D) Sequence alignment of the two 14-3-3 binding sites

across different eumetazoan species. DNA STAR Lasergene MegAlign V 7.1.0 was used for sequence alignments, and identical amino acids are highlighted

in black.
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binding will regulate the membrane localization of CCNY.
The following plasmids were transfected: wild-type CCNY-GFP,
S100A, S326A, or S100/326A mutants into HEK-293T
cells, and their subcellular localizations were visualized by
fluorescence confocal microscopy. All these mutants showed
clear membrane-localization, similar to the wild-type CCNY
(Fig. 4), suggesting that 14-3-3 binding was not required for
membrane localization of the CCNY.

Binding to 14-3-3 proteins enhances the association
of a CCNY/CDK14 kinase complex
Another important regulatory activity of 14-3-3 proteins
is to alter the binding ability of the target proteins. We
decided to examine whether 14-3-3 binding affects the
interaction between CCNY and its kinase partner CDK14.
In a co-IP assay, co-transfection of the 14-3-3 isoforms sig-
nificantly increased the amount of CDK14-GFP pulled
down by CCNY-Myc (Fig. 5A), with the 14-3-3t isoform
showing less effect on this association. Thus, 14-3-3
binding could enhance the association of a CCNY/CDK14
complex.

The 14-3-3 proteins can play two possible roles in mediat-
ing CCNY/CDK14 association. One is that 14-3-3 proteins
could act as a scaffold to bridge the interaction between
CCNY and CDK14, as 14-3-3 proteins have been proven to
bind to CDK14 in our previous report [17]. Another one is
that 14-3-3 binding might induce conformational changes in
CCNY or CDK14, which could lead to a higher binding
affinity. To address which one is true in this context, we
performed co-IP assays. As shown in Fig. 5B, co-expression
of 14-3-3b could increase the interaction between CCNY
and wild-type CDK14 as well as between CCNY and 14-3-3
binding-deficient mutant CDK14S119A (Fig. 5B). However,
the interaction between 14-3-3 binding-deficient mutant
CCNYS100/326A and wild-type CDK14 could not be enhan-
ced by ectopically expressed 14-3-3b (Fig. 5B). If 14-3-3
proteins act as a scaffold, both 14-3-3 binding-deficient
mutants CDK14S119A and CCNYS100/326A should weaken
the role of 14-3-3, whereas only CCNYS100/326A but not
CDK14S119A abolishes the function of 14-3-3 proteins in
mediating CCNY/CDK14 association. Thus, binding with
14-3-3 probably induces conformational changes in CCNY,
leading to a higher affinity binding with CDK14.

Figure 4. Subcellular localization of CCNY mutants HEK-293T cells

transfected with the indicated vectors were plated on coverslips in 12-well

plates. 24 h later, cells were fixed and then stained with DAPI.

Figure 5. 14-3-3 Proteins enhance CCNY binding to CDK14 (A) CCNY-Myc and CDK14-GFP were co-transfected with Flag-14-3-31, b, h or t. 24 h

post-transfection, the interactions between CCNY and CDK14 were analyzed by co-IP assays. (B) HEK-293T cells were transfected as indicated, and the

interactions between CCNY and CDK14 were analyzed by co-IP assays.
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Discussion

In the current study, four 14-3-3 isoforms (1, b, h, t) were
identified as novel CCNY-interacting partners in a yeast
two-hybrid screening. CCNY contains two functional
14-3-3 binding sites, Ser-100 and Ser-326, in which muta-
tion of these two sites to the nonphosphorylatable Ala resi-
dues completely abrogated 14-3-3 binding to CCNY. We
also found that ectopically expressed 14-3-3 proteins could
enhance the association of a CCNY/CDK14 complex.
14-3-3 proteins can bind to CCNY as well as CDK14. It
seems that only the association with CCNY contributes to
promote CCNY/CDK14 interaction. Based on these obser-
vations, we proposed that 14-3-3 probably acts as a scaffold
protein to mediate the association of CCNY and CDK14,
and that binding with 14-3-3 may also induce conformational
changes in CCNY, leading to a higher affinity binding with
CDK14.

Cyclins are generally very different from each other in
primary structure, but they all contain a similar tertiary struc-
ture of compact domain of five a-helices, termed cyclin box
[24]. Conventional cyclins usually have two cyclin folds:
the N-terminal fold is conserved and necessary for CDK
binding and activation; and the C-terminal fold is required
for the proper folding of the cyclin molecule [1]. The regula-
tory role of 14-3-3 proteins in CCNY presented here may
provide a new mechanism by which CCNY binds to and
activates its kinase partners with only a single cyclin fold.
The CCNY protein harbors two docking sites for 14-3-3 pro-
teins: ser-100 which is located to the N-terminal of the
cyclin box, and Ser-326 which is located to the C-terminal.
14-3-3 Binding to CCNY probably exposes the cyclin box,
thus allowing its access to the ‘PFTAIRE’ motif of CDK14.
Furthermore, the two 14-3-3 binding sites on CCNY exist in
all metazoans, indicating that the interaction between CCNY
and 14-3-3 proteins is highly conserved in evolution. The
14-3-3 proteins are likely to play important regulatory roles
in the full function of CCNY.
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