Original Article

14-3-3 Binding to Cyclin Y contributes to cyclin Y/CDK14 association

Shan Li, Mei Jiang, Wenjuan Wang, and Jiangye Chen*

Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China *Correspondence address. Tel: +86-21-54921251; Fax: +86-21-54921011; E-mail: jychen@sibcb.ac.cn

Cyclin Y is a highly conserved cyclin among eumetazoans, yet its function and regulation are poorly understood. To search for Cyclin Y-interacting proteins, we screened a yeast two-hybrid library using human Cyclin Y (CCNY) as a bait and identified the following interactors: CDK14 and four members of the 14-3-3 family (ϵ , β , η , τ). The interaction between CCNY and 14-3-3 proteins was confirmed both *in vitro* and *in vivo*. The results showed that Ser-100 and Ser-326 residues in CCNY were crucial for 14-3-3 binding. Interestingly, binding of CCNY to 14-3-3 significantly enhanced the association between CCNY and CDK14. Our findings may add a new layer of regulation of CCNY binding to its kinase partner.

Keywords cyclin Y; 14-3-3 protein; 14-3-3 binding motif

Received: November 8, 2013 Accepted: December 24, 2013

Introduction

Cyclin Y is a recently characterized member of the cyclin family. It is highly conserved among eumetazoan species [1], suggesting that Cyclin Y has important biological functions. In 2010, Liu *et al.* [2] found that Cyclin Y is essential for several developmental processes in *Drosophila*. Moreover, *cyclin Y* null mutant is homozygous lethal with most mutant animals arresting during pupal development. At the same time, another group reported that Cyclin Y is necessary for targeting presynaptic components to the axon in *Caenorhabditis elegans* [3]. An intriguing finding is that Cyclin Y is required *in vivo* for LRP6 phosphorylation, maternal Wnt signaling, and Wnt-dependent anteroposterior embryonic patterning in *Xenopus* [4].

The 14-3-3 proteins are a family of small acidic, dimeric proteins that appear to be present in all eukaryotic organisms. There are seven 14-3-3 isoforms in mammals: β , γ , ε , η , σ , τ , and ζ . All 14-3-3 proteins are highly conserved, with ~50% identity among amino acids both within and across species [5]. Although the 14-3-3 proteins have no

detectable catalytic domain [6], they are involved in the regulation of almost all biological processes via regulation of hundreds of interacting proteins. The vast majority of cellular-binding partners interact with 14-3-3 proteins in a phosphorylation-dependent manner [7]. Two canonical 14-3-3 binding motifs have been defined as RSXpSXP and RXXXpSXP (where R is arginine, S is serine, X is any amino acid, pS is phosphoserine, and P is proline). Phosphothreonine (pT) could be replaced with pS [8,9]. The different regulatory role of 14-3-3 proteins can be grouped into three major modes of action [5,10,11]: (i) Directed conformational changes in the target protein. The highly α -helical nature of the 14-3-3 proteins is rigid, which upon binding to target protein leads to deformation of the target protein with little or no change in the structure of the 14-3-3 dimer [11]. By this way, 14-3-3 binding can alter the intrinsic catalytic activity of the target protein, either inhibiting or augmenting its function; (ii) Masking. 14-3-3 Proteins act as masks to physically occlude sequence-specific or structural features of their targets, thus to modify the target protein localization [12] or to protect the target from other modifications such as dephosphorylation [13]; (iii) Scaffolding. 14-3-3 Dimer can bridge two proteins together and serve as a phosphorylationdependent scaffold protein [14].

Human Cyclin Y (CCNY) protein is composed of 341 amino acids, with the 143-249 amino acid residues forming a 'cyclin fold', a stack of five α -helices termed the cyclin box [1,15]. Conventional cyclins require two cyclin folds for their activity; it is unknown how CCNY binds to and activates its kinase partner with only a single cyclin fold [1,15]. We have previously reported that the interaction between CCNY and its kinase partner CDK14 requires the typical CDK-cyclinbinding domains, the 'PFTAIRE' motif in CDK14, and the cyclin-fold domain in CCNY. In addition, it also requires additional regions outside the cyclin box (85-136 aa and 244-341 aa) [16], implying the involvement of other regulatory mechanisms. Data in the present paper demonstrated that the binding of 14-3-3 proteins to CCNY enhanced the association between CCNY and CDK14, adding a new layer of regulation of CCNY binding to its kinase partner.

Materials and Methods

Yeast two-hybrid assay

The yeast two-hybrid screening and yeast two-hybrid interaction assays were carried out as described previously [17,18]. A human adult brain LexA two-hybrid complementary DNA (cDNA) library (Clontech, Mountain View, USA) in which cDNA fragments inserted in pB42AD were used for two-hybrid screening. pGilda-CCNY (LexA-CCNY fusion) was used as a bait to screen the library. Saccharomyces cerevisiae strains used were EGY48 (MATa, trp1, ura3, his3, leu2, $lexA_{op(\times 6)}$ -leu2) and CJY151 (MAT α , his3, trp1, LexA_{op(\times 6)}*leu2*, *LexA*_{op($\times 8$)}*-lacZ*), which was generated by integrating the lacZ reporter and its upstream modulation sequence to the strain EGY48. The pGilda was used for the expression of LexA-tagged fusion proteins. The pB42AD was used for the expression of HA fusion proteins with the B42 activation domain under the control of GAL1 promoter. The pSH17-4 was a positive control plasmid for LexA-AD fusion protein. The pRFHM1 was a negative control plasmid for expression of a LexA-human lamin C fusion protein. Filter assays for β-galactosidase activity were performed as described previously [19]. X-gal was used as a substrate. Colonies (2 mm diameter) on filters were frozen with liquid nitrogen for 1 min, then incubated with X-gal (334 μ g/ml) at 30°C.

Plasmid construction

For over-expression in HEK-293T cells, human CCNY open reading frame (ORF) was cloned into a pMYCN3 or pEGFPN3 vector, where a C-terminal Myc-tag or GFP-tag was fused to CCNY [20]. Human CDK14 ORF was cloned into a pEGFPN3 vector. Site-directed mutagenesis of CCNY was generated by polymerization chain reaction amplification using a mutagenesis kit (Strategene, Wilmington, USA). Human 14-3-3 ε , β , η , or τ ORF was cloned into a pcDNA3.1-N-Flag vector.

Cell culture

All cells in this study were cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, USA.) and penicillin/streptomycin at 37° C and 5% CO₂. Cells were transfected by using LipofectamineTM 2000 (Invitrogen) according to manufacturer's instruction. An equal amount of empty vectors was used as control in all experiments.

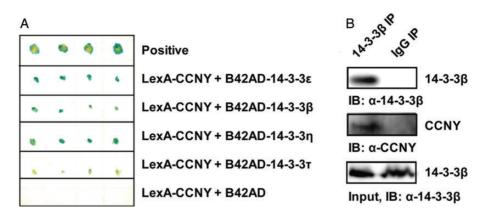
Co-immunoprecipitation and immunoblotting

Transiently transfected HEK-293T cells were collected 24 h post-transfection, and then lysed with 1%-Trition lysis buffer [50 mM Tris, pH 7.5, 150 mM NaCl, 1% TritonX-100, 1 mM EDTA, complete protease inhibitor cocktail (Roche, Basel, Switzerland), and PhosSTOP phosphatase

inhibitor (Roche)]. The same amount of total proteins was incubated with anti-Myc beads for 3 h at 4°C. After washing, the bound proteins were eluted by boiling the beads and separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Antibodies used in the present study were anti-14-3-3 β (SC-25276; Santa Cruz, Santa Cruz, USA); anti-FLAG (A2220; Sigma, St Louis, USA); anti-C-MYC (C3956; Sigma); and anti-GFP (11814460001; Roche).

Subcellular localization

Transfected HEK-293T cells were plated at a low confluency close to 30% on coverslips in a 12-well plate. Twenty-four hours later, the cells were washed with phosphate buffered saline (PBS) and fixed with 4% paraformaldehyde for 10 min at room temperature, and then washed with PBS. To visualize nuclei, the cells were stained with 1 mg/ml 4', 6-diamidino-2-phenylindole (DAPI) for 5 min, and then washed with PBS. Coverslips were mounted and observed under a Zeiss confocal microscope.


Results

CCNY interacts with 14-3-3 proteins in vitro and in vivo

To identify CCNY-interacting proteins, a full-length human CCNY was used as a bait to screen a human brain Lex-A twohybrid library. In addition to CDK14, which has been shown to be a kinase partner activated by CCNY, four 14-3-3 isoforms (ϵ , β , η , τ) were also identified. Their interactions were further validated by direct yeast two-hybrid analysis. The yeast CJY151 co-transformed with pGilda-CCNY and pB42AD-14-3-3 plasmids grew well on SC Gal His⁻, Trp⁻, Leu⁻ medium and showed β-galactosidase activity in 4-h incubation at 30°C, confirming the CCNY-14-3-3 interaction in vitro (Fig. 1A). To further verify the physical interaction of these proteins in vivo, a co-IP assay was performed by using mouse brain extracts. The mouse brain extracts were immunoprecipitated by an anti-14-3-3ß antibody, and the presence of CCNY was investigated by western blotting. CCNY was clearly detected in the 14-3-3ß immunoprecipitant, but not in that of IgG control (Fig. 1B), confirming that CCNY interacted with 14-3-3 proteins in vivo.

Both N- and C-terminal regions of CCNY are required for 14-3-3 binding

CCNY contains a single cyclin box domain (143-243 aa), which is required for binding to CDK14, and long N- and C-terminal regions outside the cyclin box domain. To investigate the regions of CCNY that are necessary for interaction with 14-3-3 proteins, we constructed various deletion mutants of pGilda-CCNY for interaction analysis between CCNY and 14-3-3 proteins using a yeast two-hybrid system (**Fig. 2A**). The yeast strains harboring CCNY or CCNY mutants with 14-3-3 β were incubated on leucine containing

Figure 1. CCNY interacts with 14-3-3 proteins (A) Interaction between CCNY and four 14-3-3 isoforms (ϵ , β , η , τ) in a yeast two-hybrid system. The pGilda-CCNY and pB42AD-14-3-3 plasmids were co-transformed into CJY151. pSH17-4 containing LexA-AD fusion protein was used as a positive control. The interactions were analyzed using a β -galactosidase activity assay on SC Gal His⁻, Trp⁻, Leu⁻ media. (B) Interaction of CCNY with 14-3-3 β *in vivo*. Lysates from mouse brain were prepared and immunoprecipitated by mouse monoclonal anti-14-3-3 β or IgG as a control. The immunoprecipitates were blotted with an anti-14-3-3 β antibody or anti-CCNY antibody. The mouse brain lysates were probed with an anti-14-3-3 β antibody as a loading control.

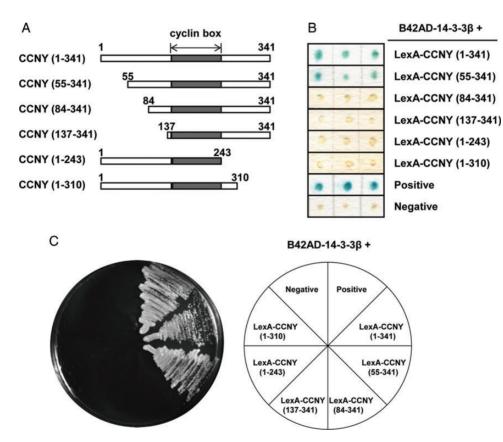


Figure 2. Mapping regions of CCNY that interact with 14-3-3 proteins (A) Schematic representation of CCNY deletion. (B) Interactions of CCNY deletion mutants with 14-3-3 β in a yeast two-hybrid system. The pGilda-CCNY deletion mutants were co-transformed with pB42AD-14-3-3 β into CJY151. The protein–protein interactions were analyzed using a β -galactosidase activity assay on SC Gal His⁻, Trp⁻ media. (C) Interactions between CCNY deletion mutants and 14-3-3 β were analyzed using a growth ability assay. The yeast strains shown in (B) were streaked onto SC Gal His⁻, Trp⁻ Leu⁻ plates and incubated at 30°C for 3 days. Plasmid pSH17-4 containing a LexA–AD fusion was used as a positive control and pRFHM1 containing a LexA–human lamin C fusion was used as a negative control.

media for β -galactosidase activity assay. Results showed that CCNY lacking 1–54 aa retained the ability to interact with 14-3-3 β , but CCNY lacking 1–83 aa was unable to interact with 14-3-3 β , suggesting that the 55–83 amino acid residues were required for 14-3-3 binding. Furthermore,

CCNY lacking 311-341 aa in the C-terminus did not interact with $14-3-3\beta$ either, indicating that this region was also required for 14-3-3 binding (**Fig. 2B**). We further examined the growth abilities of the yeast strains on leucine-depleting media. Interaction between CCNY and $14-3-3\beta$ resulted in growth of the yeast strains on Leu⁻ media. The growth ability assay confirmed the results of β -galactosidase activity assay (**Fig. 2C**). These data indicated that both N- and C-terminal regions outside the cyclin box were required for the interaction between CCNY and 14-3-3 proteins.

The Ser-100 and Ser-326 are crucial for the interaction between CCNY and 14-3-3 proteins

The 14-3-3 proteins mostly bind to their ligands through pS/ pT motifs with a few exceptions [21]. We performed a co-IP assay to examine whether the interaction between CCNY and 14-3-3 proteins is phosphorylation-dependent. As shown in **Fig. 3A**, when the cell lysates were pre-treated with lambda protein phosphatase, Flag-14-3-3 β was hardly pulled down by CCNY-Myc (**Fig. 3A**), indicating that dephosphorylation would abolish 14-3-3 binding to CCNY. We then searched the N- and C-terminal regions of CCNY for 14-3-3 binding sites, and found four putative 14-3-3 binding sites at Thr-67, Ser-83, Ser-100, and Ser-326 (**Fig. 3B**) based on the two canonical 14-3-3 binding phosphopeptide motifs: RSXpSXP and RXXXpSXP.

To determine whether these predicted residues can provide docking sites for 14-3-3 proteins, we mutated the Thr and/or Ser residues to non-phosphorylatable Ala. Co-IP assay and western blotting revealed that T67A and S83A mutations did not affect the association of CCNY with 14-3-3β. However, the mutation S100A or S326A greatly reduced the association of CCNY with 14-3-3β. Double mutation of Ser-100 and Ser-326 completely abolished 14-3-3 binding with CCNY (**Fig. 3C**), suggesting that the phosphorylation of CCNY at Ser-100 and Ser-326 was critical for 14-3-3 binding. Phosphorylation at Ser326 has been detected in both nuclear and cytoplasmic fractions [22,23]. Our unpublished data also showed that Ser-100 and Ser-326 of CCNY were phosphorylated. Sequence alignment showed that the residues Ser-100 and Ser-326 were highly conserved among eumetazoans, from hydra to human (**Fig. 3D**), suggesting that the interaction between CCNY and 14-3-3 proteins was evolutionary conserved.

Binding to 14-3-3 does not alter membrane localization of CCNY

We next investigated the regulatory role of 14-3-3 binding in CCNY. In some cases, 14-3-3 proteins are implicated in regulating the subcellular localization of their target proteins by acting as a mask [6]. Ectopically expressed CCNY is enriched at the plasma membrane due to myristoylation at N-terminal Gly-2 [16]. We investigated whether 14-3-3

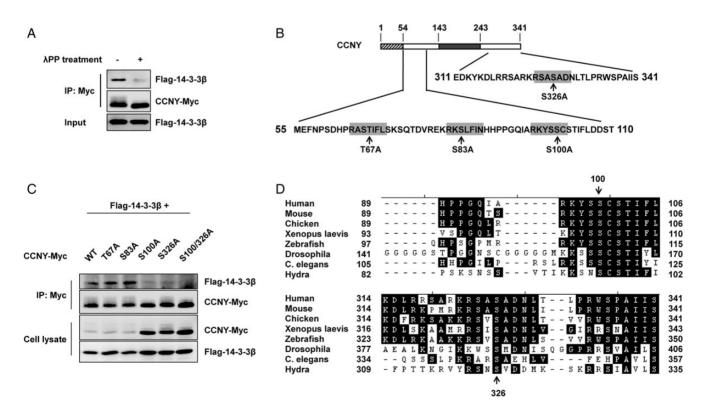
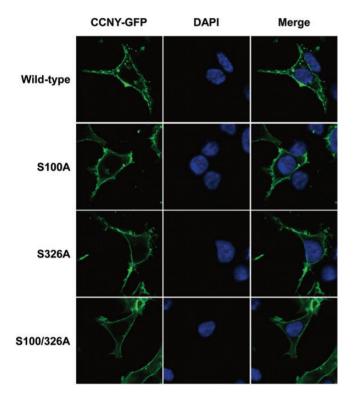



Figure 3. Identification of 14-3-3 binding sites on CCNY (A) 14-3-3 β associated with phosphorylated CCNY. CCNY-Myc and Flag-14-3-3 β were co-transfected in HEK-293T cells. Cell lysates were pre-treated with or without lambda protein phosphatase for co-IP assays. (B) Prediction of 14-3-3 binding sites on CCNY. (C) Co-IP assays of the interactions between CCNY mutants and 14-3-3 β . (D) Sequence alignment of the two 14-3-3 binding sites across different eumetazoan species. DNA STAR Lasergene MegAlign V 7.1.0 was used for sequence alignments, and identical amino acids are highlighted in black.

binding will regulate the membrane localization of CCNY. The following plasmids were transfected: wild-type CCNY-GFP, S100A, S326A, or S100/326A mutants into HEK-293T cells, and their subcellular localizations were visualized by fluorescence confocal microscopy. All these mutants showed clear membrane-localization, similar to the wild-type CCNY (**Fig. 4**), suggesting that 14-3-3 binding was not required for membrane localization of the CCNY.

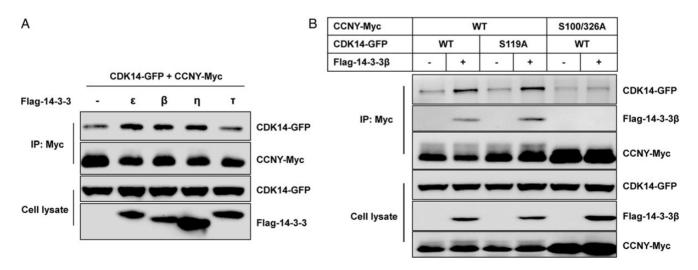


Figure 4. Subcellular localization of CCNY mutants HEK-293T cells transfected with the indicated vectors were plated on coverslips in 12-well plates. 24 h later, cells were fixed and then stained with DAPI.

Binding to 14-3-3 proteins enhances the association of a CCNY/CDK14 kinase complex

Another important regulatory activity of 14-3-3 proteins is to alter the binding ability of the target proteins. We decided to examine whether 14-3-3 binding affects the interaction between CCNY and its kinase partner CDK14. In a co-IP assay, co-transfection of the 14-3-3 isoforms significantly increased the amount of CDK14-GFP pulled down by CCNY-Myc (**Fig. 5A**), with the 14-3-3 τ isoform showing less effect on this association. Thus, 14-3-3 binding could enhance the association of a CCNY/CDK14 complex.

The 14-3-3 proteins can play two possible roles in mediating CCNY/CDK14 association. One is that 14-3-3 proteins could act as a scaffold to bridge the interaction between CCNY and CDK14, as 14-3-3 proteins have been proven to bind to CDK14 in our previous report [17]. Another one is that 14-3-3 binding might induce conformational changes in CCNY or CDK14, which could lead to a higher binding affinity. To address which one is true in this context, we performed co-IP assays. As shown in Fig. 5B, co-expression of 14-3-3ß could increase the interaction between CCNY and wild-type CDK14 as well as between CCNY and 14-3-3 binding-deficient mutant CDK14^{S119A} (Fig. 5B). However, the interaction between 14-3-3 binding-deficient mutant CCNY^{S100/326A} and wild-type CDK14 could not be enhanced by ectopically expressed 14-3-3β (Fig. 5B). If 14-3-3 proteins act as a scaffold, both 14-3-3 binding-deficient mutants CDK14^{S119A} and CCNY^{S100/326A} should weaken the role of 14-3-3, whereas only CCNY^{S100/326A} but not CDK14^{S119A} abolishes the function of 14-3-3 proteins in mediating CCNY/CDK14 association. Thus, binding with 14-3-3 probably induces conformational changes in CCNY, leading to a higher affinity binding with CDK14.

Figure 5. 14-3-3 Proteins enhance CCNY binding to CDK14 (A) CCNY-Myc and CDK14-GFP were co-transfected with Flag-14-3-3 ε , β , η or τ . 24 h post-transfection, the interactions between CCNY and CDK14 were analyzed by co-IP assays. (B) HEK-293T cells were transfected as indicated, and the interactions between CCNY and CDK14 were analyzed by co-IP assays.

Discussion

In the current study, four 14-3-3 isoforms (ε , β , η , τ) were identified as novel CCNY-interacting partners in a yeast two-hybrid screening. CCNY contains two functional 14-3-3 binding sites, Ser-100 and Ser-326, in which mutation of these two sites to the nonphosphorylatable Ala residues completely abrogated 14-3-3 binding to CCNY. We also found that ectopically expressed 14-3-3 proteins could enhance the association of a CCNY/CDK14 complex. 14-3-3 proteins can bind to CCNY as well as CDK14. It seems that only the association with CCNY contributes to promote CCNY/CDK14 interaction. Based on these observations, we proposed that 14-3-3 probably acts as a scaffold protein to mediate the association of CCNY and CDK14, and that binding with 14-3-3 may also induce conformational changes in CCNY, leading to a higher affinity binding with CDK14.

Cyclins are generally very different from each other in primary structure, but they all contain a similar tertiary structure of compact domain of five α -helices, termed cyclin box [24]. Conventional cyclins usually have two cyclin folds: the N-terminal fold is conserved and necessary for CDK binding and activation; and the C-terminal fold is required for the proper folding of the cyclin molecule [1]. The regulatory role of 14-3-3 proteins in CCNY presented here may provide a new mechanism by which CCNY binds to and activates its kinase partners with only a single cyclin fold. The CCNY protein harbors two docking sites for 14-3-3 proteins: ser-100 which is located to the N-terminal of the cyclin box, and Ser-326 which is located to the C-terminal. 14-3-3 Binding to CCNY probably exposes the cyclin box, thus allowing its access to the 'PFTAIRE' motif of CDK14. Furthermore, the two 14-3-3 binding sites on CCNY exist in all metazoans, indicating that the interaction between CCNY and 14-3-3 proteins is highly conserved in evolution. The 14-3-3 proteins are likely to play important regulatory roles in the full function of CCNY.

Funding

This work was supported by the grants from the Ministry of Science and Technology of China (2010CB912103) and the Science and Technology Commission of Shanghai Municipality (2JC1409300).

References

- Mikolcevic P, Rainer J and Geley S. Geley orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs. Cell Cycle 2012, 11: 3758–3768.
- Liu D and Finley RL, Jr. Cyclin Y is a novel conserved cyclin essential for development in Drosophila. Genetics 2010, 184: 1025–1035.

- Ou CY, Poon VY, Maeder CI, Watanabe S, Lehrman EK, Fu AK and Park M, *et al.* Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components. Cell 2010, 141: 846–858.
- Davidson G, Shen J, Huang YL, Su Y, Karaulanov E, Bartscherer K and Hassler C, *et al.* Cell cycle control of wnt receptor activation. Dev Cell 2009, 17: 788–799.
- Bridges D and Moorhead GB. Moorhead 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2005, 2005: re10.
- Muslin AJ and Xing H. Xing 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal 2000, 12: 703–709.
- Pozuelo Rubio M, Geraghty KM, Wong BH, Wood NT, Campbell DG, Morrice N and Morrice N, *et al.* 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem J 2004, 379: 395–408.
- Muslin AJ, Tanner JW, Allen PM and Shaw AS. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 1996, 84: 889–897.
- Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H and Gamblin SJ, *et al*. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 1997, 91: 961–971.
- Tzivion G, Shen YH and Zhu J. Zhu 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene 2001, 20: 6331–6338.
- Yaffe MB. How do 14-3-3 proteins work?—Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 2002, 513: 53–57.
- Yaffe MB and Elia AE. Elia phosphoserine/threonine-binding domains. Curr Opin Cell Biol 2001, 13: 131–138.
- Chiang CW, Harris G, Ellig C, Masters SC, Subramanian R, Shenolikar S and Wadzinski BE, *et al.* Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin-3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood 2001, 97: 1289–1297.
- Braselmann S and McCormick F. McCormick Ber and Raf form a complex in vivo via 14-3-3 proteins. EMBO J 1995, 14: 4839–4848.
- Liu D, Guest S and Finley RL, Jr. Why cyclin Y? A highly conserved cyclin with essential functions. Fly (Austin) 2010, 4: 278–282.
- Jiang M, Gao Y, Yang T, Zhu X and Chen J. Cyclin Y, a novel membraneassociated cyclin, interacts with PFTK1. FEBS Lett 2009, 583: 2171–2178.
- Gao Y, Jiang M, Yang T, Ni J and Chen J. A Cdc2-related protein kinase hPFTAIRE1 from human brain interacting with 14-3-3 proteins. Cell Res 2006, 16: 539–547.
- Ni J, Chen X, Yang T and Chen JY. Construction of *Candida albicans* two-hybrid library and screening for proteins interacting with Crk1. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2001, 33: 198–204.
- Ni J, Gao Y, Liu H and Chen J. Candida albicans Cdc37 interacts with the Crk1 kinase and is required for Crk1 production. FEBS Lett 2004, 561: 223–230.
- Ma GQ, Wang B, Wang HB, Wang Q and Bao L. Short elements with charged amino acids form clusters to sort protachykinin into large densecore vesicles. Traffic 2008, 9: 2165–2179.
- Masters SC, Pederson KJ, Zhang L, Barbieri JT and Fu H. Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa. Biochemistry 1999, 38: 5216–5221.
- Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J and Cohn MA, *et al.* Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 2004, 101: 12130–12135.
- Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M. Global, *in vivo*, and site-specific phosphorylation dynamics in signaling networks. Cell 2006, 127: 635–648.
- Kobayashi H, Stewart E, Poon R, Adamczewski JP, Gannon J and Hunt T. Identification of the domains in cyclin A required for binding to, and activation of, p34cdc2 and p32cdk2 protein kinase subunits. Mol Biol Cell 1992, 3: 1279–1294.