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siRNA targeting stathmin inhibits invasion and enhances chemotherapy sensitivity

of stem cells derived from glioma cell lines
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Glioma is one of the most highly angiogenic tumors, and
glioma stem cells (GSCs) are responsible for resistance to
chemotherapy and radiotherapy, as well as recurrence
after operation. Stathmin is substantial for mitosis and
plays an important role in proliferation and migration of
glioma-derived endothelial cells. However, the relationship
between stathmin and GSCs is incompletely understood.
Here we isolated GSCs from glioma cell lines U87MG and
U251, and then used siRNA targeting stathmin for silen-
cing. We showed that silencing of stathmin suppressed the
proliferation, increased the apoptosis rate, and arrested the
cell cycle at G2/M phase in GSCs. Silencing of stathmin in
GSCs also resulted in inhibited the migration/invasion as
well as the capability of vasculogenic mimicry. The suscep-
tibility of GSCs to temozolomide was also enhanced by
stathmin silencing. Our findings suggest stathmin as a po-
tential target in GSCs for glioma treatment.
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Introduction

Glioma is the most common and malignant primary brain
tumors in adults, which has a poor prognosis and displays
unique biological features especially in the network of neo-
plastic blood vessels, invasion, and metastasis. The median
survival time of patients with glioblastoma is still only 1
year despite positive surgery and therapy [1,2]. Tumor
microvessel endothelial cells have been shown to be mor-
phologically different from normal endothelial cells, with
elevated migration and resistance to necrosis [3]. Thus, anti-
angiogenesis therapy is important for glioblastoma multi-
forme (GBM) treatment. Previous studies have identified a
small population of tumor cells called glioma stem cells

(GSCs). GSCs were first isolated in 2003 [4] and were re-
sponsible for GBM initiation, propagation, chemical therapy
resistance, and glioma recurrence [5,6]. How to inhibit GSCs
becomes the hot topic of glioma research.

Recently, a number of researches have demonstrated that
vasculogenic mimicry (VM) plays a central role in the vascu-
larization of GBM [7–9]. VM was an alternative vascular
mechanism, which was first described and named by Maniotis
et al. [10] in 1999. VM describes the ability of aggressive
tumor cells to form vasculogenic-like networks which were
associated with their high plasticity. VM is also involved in
more aggressive tumor biology and can increase tumor-related
mortality [11,12]. GSCs, which are the response for malig-
nance of GBM and capable of trans-differentiation into vascu-
lar nonendothelial cells, have a strong ability of VM [13,14].

Stathmin, also known as oncoprotein 18 (OP18), is a
member of the microtubule destabilizing protein family. It
regulates microtubule dynamics during cell-cycle progression
[15]. Most studies have demonstrated that the expression of
stathmin is associated with tumor progression and unfavorable
long-term prognosis. We previously reported that stathmin 1
is over-expressed in human glioma, and the inhibition of
stathmin expression in high-grade glioma-derived endothelial
cells significantly inhibits cell proliferation, migration, and
invasion [16].

In this study, we isolated GSCs from glioma cell lines and
investigated whether stathmin 1, which is extensively researched
in the stathmin family, could also affect the proliferation and
invasion ability of GSCs, as well as chemotherapy sensitiv-
ity to temozolomide (TMZ) to provide a potential target for
anti-angiogenic treatment of glioma.

Materials and Methods

Cell culture and isolation of GSCs
Malignant glioma cell lines U87MG and U251 were obtained
from American Type Culture Collection (Rockville, USA)
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and cultured in complete Dulbecco’s modified Eagle’s
medium (DMEM; Invitrogen Tech, Shanghai, China). Then
glioma stem-like cells were successfully obtained from
U87MG and U251 cell lines following the procedure
described previously [4]. Identification of GSCs was carried
out by western blot analysis using antibodies against stem
cell markers (Oct3/4, MDR1, Sox2 and Nestin; Abcam,
Cambridge, UK).

RNA interference
The Stealth siRNA against stathmin was designed and synthe-
sized by Invitrogen Tech. The sequences were 50-GCUUC
UUCUGAUAUCCAGGUGAAAG-30, 50-CUUUCACCU
GGAUAUCAGAAGAAGC-30, and 50-GAGCUGAUUCU
CAGCCCUCGGUCAA-30. GSCs grown to a density of 1 �
105 cells/ml were transfected in duplicate with 80 nM of a
siRNA pool (three siRNA duplexes) targeting stathmin. The
mixture of 4 ml siRNAs and 6 ml lipofectamine 2000
(Invitrogen Tech) was added onto the cells after 15-min incu-
bation at room temperature. After overnight incubation, the
cells were switched to complete DMEM for 2 days. In this
experiment, scramble sequence was applied as the control
group.

GSC treated with TMZ
TMZ obtained from Sigma-Aldrich Co. LLC (St Louis,
USA) was dissolved in DMSO to make the stock solution at
10 mM which was then diluted into gradient concentrations.
Then GSCs were cultured in 96-well plates and treated with
gradient TMZ. Then LD50 of TMZ on GSCs was calculated,
and cell apoptosis analysis and cell cycle assay were also
performed.

Cell proliferation assay
GSCs were cultured in 96-well plates (6000 cells/well) and
transfected as mentioned above. Transfected and non-
transfected cells were incubated for 24, 48, and 72 h, re-
spectively. Then cell proliferation was analyzed by MTT
colorimetric assay. Experiments were performed thrice.

Cell apoptosis assay
After treatment, cells were washed, harvested, and counted.
Then 1 � 105 cells were re-suspended in 100 ml binding
buffer and incubated in the dark for 15 min at room tempera-
ture. Finally, 10 ml of Annexin V and 5 ml of PI (Sigma-
Aldrich Co. LLC) were added according to the manufacturer’s
instruction in the apoptosis kit (Biosea, Beijing, China). The
apoptosis rate was determined with an Epics Altra II cyt-
ometer (Beckman Coulter, Danvers, USA). Cells were also
viewed under an inverse fluorescent microscope. The experi-
ment was repeated thrice.

Western blot analysis
Total protein was extracted and the concentrations were
measured using a spectrophotometer (Bio-Rad, Hercules,
USA). Then, sodium dodecyl sulphate–polyacrylamide gel
electrophoresis was performed and transferred onto PVDF
membrane (Millipore, Bedford, USA), followed by blocking
with skimmed milk dissolved in tris buffer saline with tween-
20 (TBST) for 1 h at room temperature. The membrane was
incubated with primary antibody at 48C overnight, and incu-
bated with HRP-conjugated secondary antibody for 1 h at
room temperature after washing thrice with TBST. After
washing, the bands of protein were detected with ECL sub-
strates (ZhongShan Co. Ltd, Beijing, China).

Cell cycle assay
After treatment, cells were harvested, washed with ice-cold
PBS, and fixed with 70% ethanol at 48C overnight. The
ethanol was removed by centrifugation and �106 cells were
re-suspended in PBS containing 50 mg/ml PI and 50 mg/ml
RNase A (Sigma-Aldrich Co. LLC) for 30 min in the dark
before being analyzed on a FACScalibur flow cytometer
(BD Biosciences, Bedford, USA). The percentage of cells at
G0/G1, S, or G2/M phase was thereby calculated. DMSO-
treated cells were used as control. Experiment was repeated
thrice.

Quantitative real-time PCR
Cells were lysed with Trizol reagent (Invitrogen Tech) and
total mRNA was extracted. The mRNA was reverse-
transcribed into cDNA with a reverse-transcription kit
(Promega Biotech). For PCR analysis, cDNA from triplicate
dishes was diluted to a final concentration of 10 ng/ml.
Quantitative real-time PCR was performed with a Universal
Master Mix (Chembase, Beijing, China). cDNA (50 ng) was
used to determine the relative amounts of mRNA by
real-time PCR using MAX3000 Sequence-Detection System
(Chambase) with specific primers and probes. The reaction
was conducted for 40 cycles. b-actin was amplified as refer-
ence for stathmin. The primer and probe sequences are listed
in Table 1.

Transwell assay
In the invasion assay, 50 ml Matrigel (BD Biosciences) was
added to the upper chamber of the transwell apparatus with
8-mm pore size membrane (Costar, Cambridge, USA). After
the Matrigel solidified at 378C, cells were added into the
upper chamber, and the lower chamber received completed
medium. Membranes coated with Matrigel were swabbed with
a cotton swab and fixed with 100% methanol for 10 min after
24 h incubation. The membranes with cells were soaked with
crystal violet. The number of cells attached to the lower
surface of the polycarbonate filter was counted. In the migra-
tion assay, all procedures were applied without Matrigel, and
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the cell number was calculated after 12 h. Experiments were
done in triplicate.

Scratch-wound healing recovery assay
In wound healing assays, cell motility was assessed by
measuring the movement of cells into a scraped area. The
cells were placed in 24-well plates and scraped 2.0 mm
wound with a 20 ml pipette tip. The speed of wound closure
was monitored after 12 and 24 h, and the ratio of the width
of the wound versus 0 h was calculated. Each experiment
was performed in triplicate.

VM assay
Immediately before use, 24-well plates were coated with
high-concentration Matrigel (200 ml/well) and incubated at
378C for 40 min, until the Matrigel was solid. Cells were
spun down, resuspended and seeded on Matrigel-coated
wells at a density of 30,000 cells per well. human umbilical
veins endothelial cells (HUVECs) were applied as reference.
After incubation photomicrographs were taken for each well
and the number of tubes (complete circular structures) was
counted. The mean from the three readings of each well was
used as the final reading.

Statistical analysis
Statistical analyses were performed using SPSS 16.0 statis-
tical software (SPSS, Chicago, USA), and P , 0.05 was
considered to show statistically significant difference.

Results

Stathmin silencing suppressed proliferation and induced
apoptosis of GSCs
Two strains of GSCs, GSC-1 and GSC-2, were successfully
obtained from U87MG and U251 cell lines, respectively
(Fig. 1A). The stem cell phenotype of GSC-1 and GSC-2
was also confirmed by western blot assay, which showed
that the stem cell markers Oct3/4, MDR1, Sox2, and Nestin
were up-regulated in the sphere-forming GSCs compared
with the adherent cells (Fig. 1B).

Application of siRNA to silence stathmin in GSCs
resulted in reduced expression of stathmin at both mRNA
and protein levels (Fig. 1C, P , 0.05). Cell prolifera-
tion was significantly suppressed 24 h after siRNA transfec-
tion (Fig. 1D, P , 0.05), whereas the rate of apoptosis was
significantly increased (Fig. 1E, P , 0.05). Consistently,
pro-apoptotic proteins (Bax and cleaved caspase-3) were
up-regulated, while anti-apoptotic proteins (Bcl-xl and Bcl-2)
were down-regulated in stathmin-siRNA transfected GSCs
(Fig. 1F).

In the group of GSCs transfected with stathmin siRNA,
the percentage of cells at G2/M phase was 36.4%, compared
with 13.1% in the control group (Fig. 1G), indicating that
the cell cycle was arrested at the G2/M phase with stathmin
silencing.

Taken together, these results demonstrated that siRNA-
mediated silencing of stathmin suppresses proliferation,
induces apoptosis and G2/M arrest in GSCs.

Stathmin silencing suppressed the invasion and
migratory abilities of GSCs
We performed transwell analysis to examine whether the
down-regulation of stathmin affects the invasion or migra-
tory abilities of GSCs. The results showed that the invasive
and migratory capacities of GSCs were significantly inhib-
ited by stathmin silencing. The number of stathmin-siRNA
transfected cells invading through the membrane was signifi-
cantly lower than that of control-siRNA transfected cells
(Fig. 2A,B, P , 0.05). Furthermore, cell migration was eval-
uated with a scratch-wound healing assay and the extent of
cell migration into the scratched area was measured. The
wounds in the wells of control-siRNA transfected cells
healed rapidly and hardly a gap was left after 24 h. However,
the wells of stathmin-siRNA transfected cells showed a
much lower wound-healing ability than the control wells
(Fig. 2C,D, P , 0.05). These data demonstrated that stath-
min silencing suppresses both the invasion and migration
capacities of GSCs.

Stathmin silencing inhibited VM of GSCs
The results of the VM assay showed both strains of GSCs
had a strong ability of VM compared with the HUVEC
group (Fig. 3A,B). However, the microtube formation cap-
acity of GSCs was inhibited after stathmin-siRNA transfec-
tion (Fig. 3A); and GSCs which were transfected with
siRNA formed fewer tubes compared with the control group
(Fig. 3C, P , 0.05).

Silencing of stathmin increased chemotherapy
sensitivity of GSCs to TMZ
Transfection with stathmin siRNA significantly decreased
the LD50 for TMZ, an alkylating agent used for the treatment
of GBM, from 1052.4 mM in control-siRNA transfected

Table 1. Primers and probes used for qRT-PCR

Gene Sequences

Stathmin F: 50-ACTGCCTGTCGCTTGTCT-30

R: 50-GTCTCGTCAGCAGGGTCT-30

P: 50 -CTTCAGTCTCGTCAGCAGG-30

b-Actin F: 50-CTCCATCCTGGCCTCGCTGT-30

R: 50-GCTGTCACCTTCACCGTTCC-30

P: 50- CCAACACAGTGCTGTCTGGCGG-30
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GSCs to 882.0 mM (Fig. 4A, P , 0.05). Stathmin silen-
cing also significantly increased TMZ-induced apoptosis
(Fig. 4B, P , 0.05) and cell cycle arrest at G2/M phase
(Fig. 4C) in GSCs. However, the apoptosis protein Bax and
cleaved caspase-3 were up-regulated while anti-apoptosis
protein Bcl-2 and Bcl-xl were down-regulated in the
siRNA þ TMZ group compared with the control group,
TMZ group or siRNA group (Fig. 4D). These results
demonstrated that silencing of stathmin increased chemo-
therapy sensitivity of GSCs to TMZ.

Discussion

Stahthmin, known as metablastin, plays an important role
in malignant cancers. The activity of stathmin is regulated
by phosphorylation during the cellular transition from
interphase to metaphase. The non-phosphorylated stathmin

promotes the depolymerization of microtubules by seques-
tering tubulin [17] while the phosphorylated stathmin leads
to increased microtubule stabilization and promotes the for-
mation of mitotic spindles [18]. Stathmin is over-expressed
in many malignant tumors, such as leukemia, non-small
cell lung cancer, etc [19]. Stathmin over-expression can
increase the invasion of prostate cancer, promote cancer
progression and is associated with poor prognosis [20].
Silencing of stathmin can change the phenotype of malig-
nant tumors, inhibit cancer cell proliferation and increase
the chemotherapy sensitivity of cancer cells [21,22]. p53,
which is a known tumor suppressor, can also modulate
stathmin and induce cell cycle arrest at G2/M. Inhibition
of stathmin in p53-mutant cell lines induces apoptosis [23].
In our previous work, we proved that stathmin express-
ion in endothelial cells is associated with glioma WHO
grade, and inhibition of stathmin suppresses proliferation,

Figure 1. siRNA target stathmin inhibited proliferation and induced apoptosis (A) Image of GSC sphere (40�). Up panels: GSC-1 derived from

U87MG cell line; lower panels: GSC-2 derived from U251 cell line. (B) Western blot analysis on stem cell markers MDR1, Sox2, Nestin, and Oct3/4. 1,

sphere cells; 2, adhesion cells. (C) The stathmin mRNA and protein levels of GSCs from the two strains. mRNA level and protein level decreased after

stathmin silencing. Up panel: mRNA level; lower panel: protein expression level. 1, control group; 2, siRNA group. (D) The result of MTT assay on cell

viability. Cell viability of the siRNA groups was significantly lower than that of the control groups. (E) The result of cell apoptosis assay. (F) The result of

western blot analysis on apoptosis proteins. Bax and cleaved caspase-3 were up-regulated while Bcl-2 and Bcl-xl were down-regulated in the siRNA group.

1, control group; 2, siRNA group. (G) The result of cell cycle assay on GSC-1. When siRNA was applied, the cell cycle was arrested at G2/M phase.

Experiment was repeated thrice. * P , 0.05 vs control.
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invasion, and migration of vascular endothelial cells
derived from glioma [16].

GSCs can self-renew and undergo multipotential differenti-
ation, and are responsible for glioblastoma initiation, propaga-
tion, and recurrence [5]. In this study, we demonstrated that

silencing of stathmin could inhibit proliferation, migration, in-
vasion, and induce apoptosis of GSCs. GSCs are also the
most important reason for resistance of chemotherapy. TMZ
is a kind of nitrourea that could lead to DNA mismatches
which could result in cell apoptosis in GBMs [24,25]. When

Figure 2. siRNA target stathmin inhibited migration and invasion of GSCs (A) The result of transwell analysis on cell invasion and migration, the cell

number in the siRNA group was significantly lower than that of the control group. Upper panel: invasion assay; lower panel: migration assay. (B) The

statistics of transwell assay results. Left columns: invasion assay; right columns: migration assay. (C) The result of scratch-wound healing recovery assay on

GSC-2. The scratch was apparent in the siRNA group. (D) The statistics of scratch wound healing recovery assay. Experiment was repeated thrice. * P ,

0.05 vs control.

Figure 3. siRNA targeting stathmin inhibited VM of GSCs derived from cell lines (A) The results of vasulogenic mimicry assay, both GSCs formed

abundant microtubes in control group. However, there were few microtubes in two siRNA groups. (B) HUVEC was applied as reference. (C) The statistics of

vasulogenic mimicry assay. Experiment was repeated thrice. *P , 0.05 vs control.
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TMZ was applied, cell cycle was arrested at G2/M phase [26].
TMZ is very effective in clinical treatment, however, TMZ ap-
plication induces modest increase of life span. The existence
of GSCs is responsible for TMZ resistance [27]. As our result
showed that the LD50 of TMZ in GSCs was significantly
higher than that in adhesion cells which is around 100 mM
[28]. Although application of siRNA targeting stathmin could
enhance GSCs’ chemical therapy sensitivity to TMZ, but the
LD50 was still as high as 800 mM. So how to eliminate
GSCs is very important for glioma treatment.

In 1999, Maniotis et al. [10] were the first to report a new
vascular entity named VM. The term VM has been used to
describe the manner in which highly aggressive melanoma
cells have the ability to form vasculogenic-like networks
similar to embryonic vasculogenesis, which is independent
of endothelial cells. The histological structures of VM chan-
nels are patterned networks of interconnected loops of peri-
odic acid-Schiff (PAS)-positive extracellular matrix formed
by aggressive tumor cells [29]. It is a new type vasculariza-
tion of tumor that allows tumor cells to survive from hypoxia
and denutrition environment. Moreover, a regular agent that
targets VEGF for anti-angiogenesis therapies, such as endo-
star, works poorly for VM cure. In glioma, the VM-positive
rate was associated with the grade of glioma, the GBM
which is Grade IV has a strong ability of VM, and respon-
sible for poor prognosis [9]. Thus developing a new way to
inhibit VM may provide a potential method for GBM

treatment. GSCs could also strongly induce endothelial cell
migration and proliferation [30], as well as VM [14]. In this
study, we demonstrated that silencing of stathmin could
inhibit VM of GSCs. Taken together with our previous work
[16], our data showed that inhibition of stathmin could sup-
press both angiopoiesis dependent on endothelial cells and
VM dependent on aggressive tumor cells, which suggested
that stathmin is a potential target for anti-angiopoiesis and
anti-GSC treatment of glioma.

Further elucidation of the mechanisms of tumor angio-
genesis and GSCs may provide more precise and effective
anticancer therapies. Our findings suggested that stathmin
plays an important role in glioma progression by supporting
neo-angiogenesis. Stathmin may be used as a novel thera-
peutic target molecule in human glioma.
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Figure 4. siRNA targeting stathmin enhanced GSC-2 sensitivity to TMZ (A) The result of MTT assay on cell viability of each group. (B) The result

of cell apoptosis assay on each group. When siRNA and TMZ were applied together, the apoptosis rate was higher than that of the single application. (C) The

result of cell cycle assay in each group. When siRNA and TMZ were applied together, the G2/M rate was higher than that of the single application. (D)

The result of western blot analysis on apoptosis protein. Bax and cleaved caspase-3 were up-regulated while Bcl-2 and Bcl-xl were down-regulated in the

siRNA þ TMZ group compared with the control group, TMZ group, or siRNA group. 1, control group; 2, siRNA group; 3, TMZ group; 4, siRNA þ TMZ

group. Experiment was repeated thrice. *P , 0.05 vs control.
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