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Amyloid fibrils play causal roles in the pathogenesis of
amyloid-related degenerative diseases such as Alzheimer’s
disease, type II diabetes mellitus, and the prion-related
transmissible spongiform encephalopathies. The mechan-
ism of fibril formation and protein aggregation is still
hotly debated and remains an important open question in
order to develop therapeutic method of these diseases.
However, traditional molecular biological and crystallo-
graphic experiments could hardly observe atomic details
and aggregation process. Molecular dynamics (MD) simu-
lations could provide explanations for experimental results
and detailed pathway of protein aggregation. In this
review, we focus on the applications of MD simulations on
several amyloidogenic protein systems. Furthermore, MD
simulations could help us to understand the mechanism of
amyloid aggregation and how to design the inhibitors.
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Introduction

Research on protein misfolding in human diseases has been
a hot topic among a broad spectrum of disciplines. In living
cells, the conversion of proteins from their normal soluble
forms to misfolded insoluble amyloid fibrils was discovered
as key reasons for a number of neurodegenerative diseases
[1–5], such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), prion diseases (transmissible spongiform en-
cephalopathies, TSEs) and its variant Creutzfeldt–Jakob
disease, Huntington’s disease (HD), as well as several
famous unsolved non-neuropathic diseases, such as type II
diabetes and cataract.

With the development of molecular biology and crys-
tallographic technologies, a number of research articles
with crystal structures have partially clarified the struc-
ture of misfolded amyloid fibrils, which also provides

strong help in exploring the pathogenesis of these dis-
eases. The rule that higher-order structure of protein is
determined by its primary sequence, which has been con-
sidered as a dogma for years, has been challenged [6,7].
A protein could have distinctly different conformations
without any changes in primary sequence [8,9]. In prion
diseases, one of the most widely accepted views on the
mechanism of infection and propagation of prion is the
protein-only hypothesis [1,10]. It suggests that TSEs are
caused only by the infectious protein (PrPSc) that is iden-
tical to the host protein (PrPC) in primary sequence but
different in conformation [1,2,11–13]. PrPC contains
plenty of a-helices (.40%), while PrPSc includes many
b-sheets (.43%). Meanwhile, different from PrPC, PrPSc

is insoluble but has partial PK resistance [14]. Similar
observations have also been reported in Ab polymers
induced AD, which adopt b-sheet conformation [15–17].
However, this protein tends to be intrinsically disordered
in folded state [7,18]. Therefore, the research on the con-
version of protein conformations has great significance to
probe the mechanisms of pathogenesis and therapeutics
of this kind of diseases.

However, current experimental technologies, both in mo-
lecular biology and crystallography, could hardly observe
the process and pathway of the conformational conversion
and transition. The appearance of molecular dynamics
(MD) simulations [19–21] provides us an alternative
method on this issue.

Based on force fields calculated from classical Newton’s
laws or quantum mechanics, MD simulation can simulate
the atoms’ movements of biomolecules [20,22] to study the
structures and functions of solvated systems. With the
robust development of computational capability, the simula-
tion results are consistent with those of traditional ‘wet’
experiments. Therefore, MD simulations are important
supplement for experiments. Here we focus on the applica-
tions of MD simulations on protein misfolding and aggre-
gation which could hardly be explored with traditional
experiments.
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Principles and Methods

Recently, force field of AMBER (Assisted Model Building
with Energy Refinement) [23] and GROMOS (GROningen
MOlecular Simulation) [24], as well as CHARMM
(Chemistry at HARvard Macromolecular Mechanics) [25]
and OPLS (Optimized Potential for Liquid Simulations)
[26], are widely used in biomolecules simulations. Several
basic concepts are illustrated here. First, the start structures
are preferred to be real. That is, MD results originated with
X-ray or nuclear magnetic resonance (NMR) structures
from Protein Data Bank (PDB, http://www.pdb.org/pdb/
home/home.do) are more convincing than those from mod-
eling structures. However, MD simulations are currently
restricted to timescales of ,1 ms, which is much shorter
than folding and misfolding half-time of most proteins (at
least 1 ms) [27,28]. The common approaches are: (i) taking
the most important part that has the closest relationship
with the project as MD system and (ii) pulling dynamics
[29–31], and high-temperature MD simulations [32,33]
could be employed to speed up the misfolding and folding.
Certainly, parallel trajectories of MD simulations could
generate more conformations in solvent and provide more
observations.

MD Simulations in Prion Diseases

TSEs and relative diseases are considered to be attributed to
the structural transition of PrP protein (PrPC to PrPSc) nor-
mally encoded and expressed by gene Prnp [1]. In this tran-
sition, the primary structure of PrP protein does not
undergo any changes, but the secondary and tertiary struc-
tures in PrPSc are distinctly different from those in PrPC.
Normal structure of PrP protein is shown in Fig. 1. As one
of the hottest topic in protein misfolding and amyloid ag-
gregation, much progress has been made in the mechanism
of PrP protein aggregation and infections.

It is well known that transition from PrPC to PrPSc can
be induced by infectious PrPSc, or an external factor, such
as low pH [1,2,34]. Many MD simulations have demon-
strated the role of pH. It has been observed that the transi-
tion from PrPC to PrPSc is pH dependent [35,36]. MD
simulations on PrP125 – 228 were carried out in neutral,
weakly acidic and strongly acidic solutions, respectively
[36]. It was confirmed that acidic environment could facili-
tate the aggregation of PrP protein, helices unfolded, and
b-sheets extended. In high-temperature (350 K) simulations
on the same system, unfolding pathways induced by heat
and low pH were considered different. Additionally, it was
concluded that the intramolecular salt-bridges were critical
in the stabilization of PrPC.

Besides infectious PrPSc and low pH, glycosylation of
PrP protein is also critical to the prion protein’s transition
[37,38]. This post-translational modification appears to
protect PrPC from its transition. Zuegg et al. [39] performed
MD simulations on the structured region of PrP (Res. 127–
227) which had several glycosylation sites on Asn residues
and shown in Fig. 2(A). They found that glycosylation
could indeed stabilize the prion protein, indirectly through
reducing the mobility of the surrounding solvents.
Recently, several research teams have observed that the low
pH-induced PrP transition could possibly be reversible,
both in experiments and MD simulations [34,40,41]. Even
in the strongly acidic environment of pH ¼ 1.7, the mis-
folding process could be reversed.

Progress has also been made in the polymerization
mechanisms of prion proteins. In 2002, the dimerization of
PrP protein was found to play a key role in the transition
[42]. In the same year, through MD simulations, it was dis-
covered that the octamer of short prion peptides could be
stable enough to be an oligomerization seed [43]. In the
misfolding process, consistent results were obtained that
most populated intermediate states in MD simulations are
partially unfolded with relatively high a-helix content [44].
And b-sheets may form between molecules, rather than
from intra-molecule.

MD Simulations in AD

It was demonstrated in many recent researches that the over-
expression, aggregation, and deposition of Ab protein,
which constitutes plaques in brain tissue in AD patients,

Figure 1 Structure of normally folded human prion protein High

content of a-helix is shown in red, b-sheets are shown in cyan, and

unstructured N-terminal is shown in gray. Glycosyl-phosphatidyl-inositol

(GPI) anchor is also shown.
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may be critical in the exploring of mechanism of AD and
the relative drugs and therapeutics [3,45]. With the progress
of solid-state NMR methods, MD simulations have contrib-
uted to protein misfolding topic. Ab40 and Ab42 are two
major products of the cleavage of amyloid-b precursor
protein (APP), whose original functions are important in
cell adhesion, neuronal mobility, and transcriptional regula-
tion [46,47]. The oligomerization of Ab proteins may be
the key step in the formation of amyloid fibrils. Standard
MD simulations, pulling dynamics, and umbrella sampling
on structured region of Ab were performed in 2010 [48].
Buchete et al. [49] reported the same observation that the
salt bridge between D23 and K28 stabilized the protofibrils.
Furthermore, packing of I32 and aliphatic portion of K28
could in turn stabilize this salt bridge. So compounds that
can interrupt these interactions might inhibit AD.

The two important types of Ab monomers, Ab40 and
Ab42 with only two amino acids different, show distinctly
different conformations. Surprisingly, Ab40 could inhibit
the aggregation of Ab42 [50]. Several MD simulations and
NMR experiments have confirmed the importance of
Met35 [51] and the hydrophobic turn located at C-terminal
Gly37–Gly38 [52] in the aggregation. Also, different dy-
namics of the hydrophilic residues at N-terminal of Ab42

are critical for the oligomerization [52]. In 2005, 12

trajectories of long-time MD simulation of 12 on Ab40 got
the consistent results [53].

In 2005, the crystal structure of amyloid-like fibril from a
yeast prion-derived peptide was determined through X-ray
microcrystallography [16]. This research was considered as
a milestone in this field. Then a set of crystal structures
from different protein precursors were also determined
using the same method [54]. These atomic-resolution struc-
tures make it possible to investigate the common characters
of amyloid formation by atomic MD methods, and directly
compared with the experimental results. Chen et al. [55]
have done a set of works on the mechanism of amyloid-like
fibrils oligomerization using MD simulations. In 2008,
cross-b Gly-Asn-Asn-Gln-Gln-Asn-Tyr (GNNQQNY)
peptide in yeast protein Sup35, which could be converted
to PrPSc-like fibrils, was carried out to simulate at several
different temperatures. The tetramer of this peptide was
found to be the probable transition state (TS) in the aggre-
gation from the disaggregation landscape. 2-2 and 3-1
arrangements were found to be dominant in the TS. In
2009, several other Ab relative peptide oligomers with
modeled structures were further simulated and studied. For
the Gly-Ile-Phe-Gln-Ile-Asn-Ser (GIFQINS) peptide, its
dissolution is thermodynamically more difficult than aggre-
gation. And the hexamer of GIFQINS is highly stable.

Figure 2 Applications of MD simulations on different amyloid fibrils (A) The reversibility of human PrP protein. (B) Predicted aggregating pathway

of amyloid peptide GIFQINS, from unfolded monomer to intermediate 2-2 tetramer to the most stable 3-3 hexamer. (C) Secondary structure changes in

the dimerization of rIAPP and hIAPP.
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Furthermore, the intermediate of 2-2 tetramer and two TSs
of 2-1 trimer and 3-2 pentamer were discovered through
high-temperature MD simulations [56]. Aggregating
pathway for GIFQINS was shown in Fig. 2(B). Chen et al.
[57] and Ye et al. [58] performed MD simulations on the
stability of amyloid-like oligomer peptides. Among eight
peptides from five classes [54], short peptides MVGGVV-1
and VEALYL were observed to be the most stable ones.
Hydrophobic interactions play key roles in the oligomers
stabilization. M1 and V2 in MVGGVV-1 and V1, L4 and
Y5 in VEALYL are key residues. For MVGGVV-1, inter-
mediate states may be 3-0 trimer and 2-2 tetramer. For
VEALYL, 3-0 trimer and 3-2 pentamer may constitute the
intermediate states.

MD Simulations in Other Diseases

Islet amyloid polypeptide (IAPP) has been identified as the
primary component of the deposits in and around pancreas
islet b-cells in type II diabetes [4]. Through MD simula-
tions on core peptide of IAPP, Asn-Phe-Gly-Ala-Ile-Leu
(NFGAIL), the fiber organization was confirmed to be se-
quence dependent and the inter-sheet hydrophobic and aro-
matic interactions are dominant [59,60]. This may be
common in many other amyloid proteins aggregations.
NFGAIL has also been used in further researches. Colombo
et al. [61] demonstrated a core-recognition motif in the ag-
gregation of IAPP. Before the formation of the whole
cluster, the peptides would form a locally parallel align-
ment stabilized by inter-molecular aromatic interactions.
This was consistent with findings of the previous work
[59]. Further MD simulations were performed on 37-mer
peptides of amyloidogenic human IAPP (hIAPP) and non-
amyloidogenic rat IAPP (rIAPP) which is different from
hIAPP by six residues [62] [Fig. 2(C)]. Besides inter-
molecular interactions stabilizing hIAPP dimers, it was also
observed that b-strand can recruit helix or coil in dimeriza-
tion. These MD simulations could provide better under-
standing on the mechanism of type II diabetes.

PD is one of the most widespread progressive neurode-
generative diseases. Lewy bodies (LBs) in substantia nigra
pars compacta, which consist of aggregated a-synuclein
proteins, are considered as the main pathogenic signs in PD
[5,12,63]. a-Synuclein is disordered in solution, but on
lipid membrane it adopts conformation of partial a-helix.
Transition from its normal conformation to b-sheet amyloid
aggregations is the key to the understanding of PD mechan-
isms. Copper ions binding may trigger the aggregations of
a-synuclein [64,65], and mutations of A30P and A53T
were found to accelerate the aggregation of a-synuclein
[66,67]. In recent years, several investigations on the aggre-
gations of wild-type and mutant a-synuclein have been
conducted. Comparison between A53T mutant and wild-

type a-synuclein through NMR and MD simulations
showed that the mutant a-synuclein had higher hydration
level, leading to more favor on protein–protein interactions
[68]. This difference disappeared in amyloid state, suggest-
ing the independence between polymer and monomer. It
was also found that both wild-type and mutant a-synucleins
kept their global conformations during nanosecond time-
scale of the simulation; while A30P mutant of a-synuclein
was found to have a transient change near the mutation site
to form a kink-like conformation, which would influence
the self-assembly of a-synuclein [69].

MD Simulations in Developing Amyloid
Fibrils Inhibitors

The therapeutics of amyloid fibril-related diseases is
another hot issue, especially on the aggregation inhibitors
of Alzheimer’s Ab proteins. MD simulations could be used
to explain the structure–affinity relationship [70]. MD
simulation can be started from either cocrystallized structure
of the receptor and ligand, or from drug candidates docking
results at the binding site. In their docking results, Tell
et al. [71] could have the explanation of the high activity of
drug candidate 4f in the serie of 1-aza-9-oxafluorenes as an
inhibitor of AD relative kinases. To study the binding mode
of the novel inhibitor, MD simulations on Ab protein with
and without drug bindings were performed [72]. There are
critical hydrophobic interactions between drug and Ab

protein. C-terminal fragments (CTFs) of Ab protein were
found to inhibit the Ab toxicity. Discrete MD simulations
were performed on Ab protein in the absence and presence
of CTFs [73]. CTFs decreased the b-sheet content and
reduced the solvent accessibility in D1-R5, which could
also explain the higher toxicity level of Ab42 than that of
Ab40.

Concluding Remarks

In this review, a number of MD simulation cases were dis-
cussed, providing a general view of computational research
on the aggregation mechanism of amyloid fibrils. The in
silico approach could be employed as a highly complemen-
tary and synergistic tool in researching amyloid fibril-
related diseases, such as prion diseases, AD, type II dia-
betes, and PD, and could widen the concept of amyloid
fibrils inhibitors and the therapeutics of amyloid fibril-
related diseases. Although more effort is still needed in the
force field improvement, MD simulations will become
more and more important in addressing variety of biologic-
al questions in the future. In summary, the cooperation
between experimentalists and theorists should be very pro-
ductive in scientific researches.
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