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The prion diseases, also known as transmissible spongi-
form encephalopathies, are fatal neurodegenerative disor-
ders. According to the ‘protein only’ hypothesis, the key
molecular event in the pathogenesis of prion disease is the
conformational conversion of the host-derived cellular
prion protein (PrPC) into a misfolded form (scrapie PrP,
PrPSc). Increasing evidence has shown that the most infec-
tious factor is the smaller subfibrillar oligomers formed by
prion proteins. Both the prion oligomer and PrPSc are rich
in b-sheet structure and resistant to the proteolysis of pro-
teinase K. The prion oligomer is soluble in physiologic
environments whereas PrPSc is insoluble. Various prion
oligomers are formed in different conditions. Prion oligo-
mers exhibited more neurotoxicity both in vitro and in vivo

than the fibrillar forms of PrPSc, implying that prion oligo-
mers could be potential drug targets for attacking prion
diseases. In this article, we describe recent experimental
evidence regarding prion oligomers, with a special focus
on prion oligomer formation and its neurotoxicity.
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Introduction

Prion diseases, also known as transmissible spongiform en-
cephalopathies (TSEs), are a group of fatal neurodegenera-
tive disorders that can infect both animals and humans,
including Creutzfeldt–Jakob disease, kuru and fatal familial
insomnia in humans, bovine spongiform encephalopathy in
cattle, scrapie in sheep, and chronic wasting disease in deer
and elk [1–6]. The key molecular event in the pathogenesis
of prion diseases is the conformational conversion of the
host-derived PrPC (soluble cellular prion protein) into a
misfolded form PrPSc (insoluble scrapie PrP) [1]. Until

now, the pathologic mechanism of the prion disease is still
unclear. According to literature reports, misfolded protein
aggregates are involved in no fewer than 20 human dis-
eases, collectively called protein misfolding disorders
(PMDs). They include highly prevalent neurodegenerative
diseases such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), and Huntington’s diseases [7–9]. Although
the proteins in PMDs are evolutionarily or structurally unre-
lated, the structural characteristics of the misfolded forms
are highly similar and they share the same features including
an increase of the b-sheet structure, oligomerization, and for-
mation of fibrillar amyloid-like polymers [10–12].
Eventually, the protein aggregates become insoluble, resist-
ant to proteolysis, and induce nerve cell death [13,14].

Usually, PrPSc is considered to be the culprit in prion
diseases due to its morphological and biochemical proper-
ties [15–19]. Despite the supports of many researches, the
amyloid hypothesis has been widely challenged [20]. A
contradiction is that there is no evident correlation between
amyloid deposits and state of the illness, but the synapse
loss is obviously related to cognitive impairment [21,22].
The experimental evidence that small derivatives resulting
from fibrillar PrPSc showed significant toxicity in amyloid
deposits, suggested that there was another factor initiating
the disorder [23,24]. The subsequent researches also indi-
cated that monomeric PrPC could be transformed into
various forms of oligomers that showed neurotoxicity
in vivo and in vitro [25,26]. Some work confirmed that
prion oligomers were the transmissible X form [25,27].
However, interestingly, PrPSc showed little toxicity and was
considered to be a defensive product in the defense system
[28]. The crossing between misfolded proteins in AD and
those in prion diseases has initiated a lot of controversies
[29,30]. Further studies should be performed to exploit the
potential relationship between AD and TSEs.

Although much progress has been made in the studies of
prion oligomers, many controversies about the biochemistry
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and biophysics of prion oligomers remain to be elucidated.
In this review, we summarized the recent progress in the
studies of the prion oligomer and its neurotoxicity.

Structures of Prion Proteins

PrPC is soluble and sensitive to the proteolysis of proteinase
K, whereas PrPSc is an insoluble and proteinase-resistant ag-
gregate. Both circular dichroism (CD) and Fourier transform
infrared (FTIR) spectra show that PrPC adopts an a-helix-rich
conformation whereas PrPSc possesses a b-sheet-rich con-
formation [31]. PrPC is a conserved glycoprotein and mainly
expressed in the central nervous system [32]. It has a single
polypeptide chain of about 210 amino acid residues. The N
terminus (residues 23–120) is flexible, with a highly con-
served octa-repeating sequence PHGGGWGQ, whereas the
C terminus (residues 121–231) is a globular structured
domain encompassing three a-helices and two short antipar-
allel b-strands (Fig. 1) [33].

As PrPSc is insoluble, it is difficult to determine its three-
dimensional structure by solution nuclear magnetic reson-
ance (NMR) or X-ray crystallography techniques. Thereby
the ternary structure of PrPSc is poorly understood up to

now. Several structural models have been proposed to dem-
onstrate the structural characteristics of PrPSc based on the
studies of electron microscopy and atomic force microscopy
[34–36], such as the b-helix model [37], the spiral model
[38] and the parallel in-register b-sheet model [39,40]. All
the structural models indicate that the ternary structures of
PrPSc are more compact and compressed tightly with repeti-
tive b-sheet-rich units (Fig. 2). Determination of the three-
dimensional structure of the prion oligomer is really a huge
challenge to scientists. Although the ternary structures of
prion oligomers have not been exactly interpreted, the
atomic structures of some analogue have been provided by
X-ray crystallography [27]. The oligomer formed by the ab

crystalline protein, possesses the typical character of oligo-
mers: b-sheet-rich structure, neurotoxicity, and recognition
by an oligomer-specific antibody, illustrating a cylindering
structure with six antiparallel b-strands (Fig. 3).
Furthermore, the three-dimensional structures of some prion
protein fragments have also been determined, which could
be transformed into amyloid fibrils [41]. The small peptide
of human PrP (residues 106–126), which is partially resist-
ant to proteinase K, presents a high b-sheet-enriched struc-
ture, and forms amyloid fibrils in vitro [42,43]. The

Figure 1 Structural features and biochemical properties of the cellular prion protein (A) Scheme of the primary structure of PrPC. (B) Tertiary

structure of PrPC attached to the lipid bilayer with the GPI anchor. Figure panels are redrawn from a previous publication [4].
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secondary and quaternary structures of the fibrils have been
defined with solid-state NMR spectroscopy [44]. These results
indicated that the PrP peptides form in-register parallel b

sheets, stack in an antiparallel manner within the mature fibril.
Although PrPC is a conserved protein and the ternary

structure is almost the same among species, there are a few

mammalian species that appear to be resistant to TSEs due
to the unique structural characteristic [45]. Rabbit is one of
the TSEs-resistant species. However, it was recently
reported that the species barrier in rabbits could be over-
come by using the protein misfolding cyclic technique
[46,47]. These studies suggested that it is not reasonable to
attribute species-specific prion disease resistance based
purely on the absence of natural cases and incomplete
in vivo challenges. The concept of species resistance to
prion disease should be re-evaluated using the new power-
ful tools available in modern prion laboratories, whether
any other species could be at risk [47].

Recently, our laboratory has determined the solution
structures of the recombinant rabbit prion protein
RaPrPC(91–228) and its S173N and I214V variants, and
also detected the backbone dynamics of their structured
C-terminal domain (121–228) using multi-dimensional
NMR techniques [48,49]. Moreover, the wild-type RaPrPC
protein shows a much higher structural stability compared
with its S173N and I214V mutants, which was confirmed
by molecular dynamics simulation [50]. Significantly,
RaPrPC possesses a unique electrostatic charge distribution,

Figure 2 Structural models of PrPSc (A) The b-helix model. Left top panel: The residues (89–175) are transformed into the b-helical fold (red),

whereas a-helix 2, 3 remain the native conformation (blue). The trimer assembles by the b-helical fold. Bottom left panel: Space-filling model of the

trimer, the protein surface is shown in gray and sugars are shown in cyan. Right panel: The trimers are stacked into an assembly of a protofibril. (B) The

spiral model. Left top panel: PrPSc-like trimer with circumferences: b-sheet core (magenta), all protein atoms (gray), and the diglycosylated protofibril

(cyan). Bottom left panel: Space-filling model of the trimer, the protein surface is shown in gray and sugars are shown in cyan. Right panel: The trimers

were stacked into an assembly of a protofibril. Bars at the top indicate diameters of the 35 Å extended b-core (magenta), 65 Å protein diameters (gray),

and a 110 Å diglycosylated protofibril (cyan). (C) Parallel in-register b-sheet model. The arrow indicates the long axis of the fibril. Figure panels are

redrawn from previous publications [37,38,40,104].

Figure 3 Crystal structure of the protein ab crystallin oligomer
Ribbon representation of the oligomeric ab crystallin crystal structure.

Pairs of strands form antiparallel dimers, which assemble around a

threefold axis down the barrel axis of the oligomer. The height of the

oligomer is 22 Å. The inner dimension of the oligomer, around the waist

from Ca to Ca, is 12 Å, and at the splayed ends the diameter is 22 Å.

Figure panels are redrawn from a previous publication [27].

Prion protein oligomer and its neurotoxicity

Acta Biochim Biophys Sin (2013) | Volume 45 | Issue 6 | Page 444

D
ow

nloaded from
 https://academ

ic.oup.com
/abbs/article/45/6/442/1559 by guest on 18 April 2024



carrying a continuous area of positive charge on the protein
surface, which is distinguished from any other PrPC

(Fig. 4). Previous studies suggested that the conformational
transformation of PrPC into PrPSc was accompanied by a
molecular chaperone ‘Protein X’, and a specific nucleic
acid could bind to PrPC and induce conformational change
[51–56]. The unique distribution of electrostatic potential
appearing on the RaPrPC surface is dramatically different
from those on other PrPC surfaces, which potentially makes
significant contribution to protect RaPrPC from the con-
formational conversion. The predicted DNA-binding sites
among PrPC molecules from distinct mammalian species
suggest that RaPrPC possesses a relatively small putative
DNA-contacting surface [57]. The continuous positive
charge on the RaPrPC surface might be a key factor that
makes rabbits be resistant to TSEs.

The recent studies of ternary structures of PrP proteins
lay the crucial basis for further addressing their biological
functions, and may give the clue to elucidate the pathology
of TSEs.

Formation of Prion Oligomers

The discovery of prion can date back to 1982, when the
Nobel Prize winner Stanley B. Prusiner described prion
proteins as novel proteinaceous infectious agents causing
scrapie [58]. The ‘protein-only’ hypothesis was a challenge
to the common sense at that time. In 1985, the first evi-
dence was reported that PrP was assembled into filaments
within the brain to form amyloid plaques in extracellular
spaces of scrapie-infected hamsters [59]. The filaments
were composed of PrP27–30 molecules, as determined

Figure 4 Distributions of electrostatic potential of PrPC and the predicted DNA-binding sites (A) distributions of electrostatic potential of PrPC, a:

rabbit PrPC (PDB code 2FJ3); b: human PrPC (PDB code 1QM3); c: mouse PrPC (PDB code 1XYX); d: bovine PrPC (PDB code 1DWZ). Three-dimensional

structures of these PrPCs were all determined in sodium acetate buffer at pH 4.5. Blue, positive charge; red, negative charge. (B) Molecular surface graphs

evidencing the differences in the predicted DNA-binding sites (colored blue). The tab is the same as in (A). DNA-binding predictions were performed using

DISPLAR. All surface graphs were generated using MolMol. Figure panels are redrawn from a previous publication [49].
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by immunoelectron microscopy using affinity-purified
antibodies.

Many studies were conducted to clarify the formation of
prion oligomers in different conditions with various trun-
cated fragments. Generally, there are three recombined pro-
teins: the full length PrP (residues 23–231), the truncated
PrP (residues 91–231) that was supposed to be the core
section after the proteolysis of PrPSc with proteinase K, and
the truncated PrP (residues 121–231) that was confirmed to
be the smallest well-structured domain. In 1997, Swietnicki
et al. [60] discovered that conformational properties and the
folding pathway of human PrPC (residues 90–231) are
strongly pH-dependent. In acidic solutions (pH 3.6–5.0),
the urea-induced unfolding transition processes of PrPC

could be fitted to a three-state unfolding model by measuring
the ellipticity at 222 nm as a function of denaturant concen-
tration. However, in neutral solutions the urea-induced
unfolding transition processes were fitted to a two-state
unfolding model. Therefore, PrPC was supposed to be trans-
formed into an intermediate in acidic conditions. Afterwards,
PrPC was confirmed to form a soluble b-sheet-rich oligomer
in a condition of an acidic mildly denaturing (4 M urea or
1 M guanidine hydrochloride) with a high salt concentration
[61]. However, the necessity of salts has not been interpreted
in details. There was a clue that the abnormal effect of salts
was likely caused by the ion-induced destabilization of salt
bridges (Asp144–Arg148 and/or Asp147–Arg151) in the ex-
tremely hydrophilic helix 1 rather than the interaction of ions
with the octa-repeating in the flexible N-terminal region of
PrPC [62]. The prion oligomer adopts a b-sheet-rich form as
verified by CD spectrum, and shows an increased resistance
to proteinase K digestion compared with monomeric PrPC.
Some work conducted on the reduced form of recombinant
PrPC(23–231), revealed four b-sheet-rich isoforms as
judged by their distinct retention time in reverse-phase chro-
matography [63,64]. In contrast, another work demonstrated
that both PrPC and PrPSc maintain a disulfide bridge [65].
The three-dimensional structure of PrPC illustrates that the
disulfide bridge exactly exists in the stable state of PrPC

[48,49,66].
In 2002, Baskakov et al. [67] studied the mouse and

Syrian hamster PrPs and found that the recombinant PrPs
(recPrPs) were able to form two structurally distinct
non-native isoforms: the b-oligomer form and the amyloid
isoform. At acidic pH, recPrPs were converted into
b-oligomers; while at neutral or slightly acidic pH, recPrPs
were converted into the amyloid isoform. Analysis of both
dynamic light scattering and electrospray ionization
tandem-mass spectrometry indicated that the radius of the
b-oligomer was 6.5 nm with an average molecular mass of
300 kDa. Although it was suggested that the b-oligomer
was not the precursor of the amyloid isoform and its con-
struction was different from the amyloid isoform, more

direct evidence was needed to elucidate the relevance
between the b-oligomer and the amyloid fibril. In addition,
an obvious difference between the oligomer and the amyloid
fibril is the ability to bind Thioflavin T [68,69]. The experi-
mental results indicated that the surface of the oligomer had
more hydrophilic residues than that of the amyloid fibril.
Many studies have been performed to explore the relation
between the prion oligomer and PrPSc [70,71].

Whether the conformational conversion of monomeric
PrPC into the b-sheet-rich oligomer is reversible is another
question that remains enigmatic. Rezaei et al. [72] pointed
out that the oligomerization pathway of the full-length
recombinant ovine PrP is irreversible. They used heat-
induced unfolding process instead of the mildly denaturing
condition to assess the conformational conversion.
Interestingly, two distinct oligomers (12 mer and 36 mer)
were formed from monomeric PrPC in the heat induced-
unfolding process. The two oligomers possessed different
secondary and quaternary structures, as confirmed by the dif-
ferent binding sites of the corresponding antibody. Moreover,
results from the analysis of pressure-jump 1H-NMR spectros-
copy suggested that the monomer–oligomer transition was
reversible [73]. In general, the prion oligomers could be
formed either in the heat-induced unfolding process or under
an acidic mildly denaturing condition (4 M urea or 1 M guan-
idine hydrochloride), together with the high salt concentra-
tion. These formed oligomers are stable and the transition is
irreversible.

Recently, more and more studies were conducted to assess
the difference among various protein oligomers and under-
stand the diversities of the oligomers [74–77]. One of the
latest ‘coups de theatre’ in the amyloid history is the observa-
tion that PrPC was a high-affinity cell-surface receptor for
soluble Ab oligomers on neurons and is a mediator of Ab

oligomers-induced synaptic dysfunction [78]. This hypoth-
esis, however, has been challenged by several researches
[78–80], and has become a highly controversial issue that is
still far from being settled [81]. Now it is widely believed
that the protein oligomers are various and different from
each other, and one specific oligomer could be transformed
into the corresponding amyloid fibril in the lasting denatur-
ing condition [28,82,83]. Determination of the core structures
of the oligomers is the key to explore the pathologic mechan-
ism of conformational transition [76,77].

PrP Oligomerization Proceeds via a Molten
Globule Intermediate

In the slight acidic or neutral solution, PrP undergoes
two-state change (a normally native-form to denatured-
form) on the unfolding and refolding way in the degener-
ation experiments. However, in the acidic buffer PrP may
experience an ‘intermediate’ state on the unfolding and
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refolding way [64,65,84]. As the transient intermediate was
hardly observed, the fluorescence titration experiment was
the early primary method to detect the kinetics of folding
and unfolding reactions for the recPrP [85]. The intermedi-
ate showed an increased absorption value compared with
the native state of PrPC, and a decreased absorption value
compared with the oligomers in the particular condition
[60,86,87]. It has been confirmed that the intermediate
exactly exists in the acidic solution with mild denaturant,
providing an important clue to explain the pathologic way
of the prion diseases. Nevertheless, the intermediate is hard
to be captured and its structural property remains unclear.

Early studies of the recPrP suggested that the conform-
ation conversion of monomeric PrPC into b-sheet-rich oli-
gomers might go through a compatible intermediate with a
preformed b-sheet subunit structure [60,87]. On the con-
trary, far-UV CD results demonstrated that the intermediate
adopted an almost intact a-helical organization, termed as a
molten globule state [70]. The near-UV CD results, which
provided a qualitative measure of the tertiary structure of
the protein, illustrated distinct difference between the native
PrPC and the molten-PrPC. These near-UV CD spectra
display signal loss for the molten-PrPC, whereas the native
PrPC is clearly highly organized [70]. The two-dimensional
NMR spectra also exhibit signal loss of high field methyl
protons for the molten-PrPC when compared with native
PrPC, implying a loss of the tertiary structure [70]. These
data clearly identified an intermediate state (a molten
globule state), which was partially unfolded, monomeric,
and on the pathway to form the b-oligomer (Fig. 5).

Studies of molten globule states were performed to
understand the intermediate states of folding and unfolding
of proteins [86]. Multiparametric analyses of equilibrium
folding and unfolding of several globular proteins allowed
the classification of the intermediates between the native
and unfolded states [88–95]. The general properties of
these intermediates include a pronounced secondary struc-
ture, a high compactness without a rigid packing inside a
molecule, and substantially increased fluctuations of side
chains and larger parts domain. Owing to these particular
structural properties, this class of intermediate states has
been defined as the ‘molten globule’ state.

Several studies have explored the biological significances
of the molten globule intermediate in the process of con-
formation transition [96,97]. The molten globule state pro-
vides a clue that the intermediate of the oligomer or PrPSc is
a thermodynamically stable intermediate [86], which might
account for the fact that in refolding and unfolding experi-
ments, heat-induced oligomers were more stable than the
urea-induced oligomers [98]. Actually, there was an energy
barrier in the first step of the pathway of PrPC converting
into PrPSc. Although the CD measurement of the molten
globule state showed the a-helix-rich secondary structure,

b-sheet transition was also detected with the more sensitive
b-sheet probe ANS that could bind to the intermediate.
Gerber et al. [70] reported that 2D NMR spectra recorded
on the intermediate and oligomer were similar. As the
oligomer is too large to be directly observed, it could be
expected that understanding the construction of the molten
globule intermediate would be helpful to elucidate the struc-
tural features of the b-sheet misfolded isoform.

Neurotoxicity of Oligomers in vitro
and in vivo

Recent studies indicated that the formation of large amyloid
fibrils might be a protective process: the neurotoxic subfi-
brillar oligomers grow into relatively innocuous fibrils
[99,100]. Silveira et al. [25] first reported that the non-
fibrillar particles, with masses equivalent to 14–28 PrP
molecules, were the most efficient initiators of prion dis-
eases. Their results showed that the infective and converting
active particles were �17–27 nm (300–600 kDa). Rather
than expressing the recPrP in bacterial systems, they purified
PrPSc from scrapie-infected (263K strain) hamster brain and
treated with proteinase K to produce a product of .90%
purity [101]. To break down the large PrPSc aggregates into
a range of smaller particles for evaluating the activity, they

Figure 5 Schematic representation of the folding pathways of
recombinant human prion protein in vitro PrPC is first transformed

into the molten globular state, which is the precursor of the oligomer.

Then the oligomer is converted into PrPSc. The schematic diagram is

inferred but not confirmed. Figure panels are redrawn from a previous

publication [70].
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treated PrPSc with various detergents and sonication. Their
work demonstrated that sodium N-undecyl sulfate (SUS)
treatment was better than sodium dodecyl sulfate treatment
by comparing the levels of converting activity. The method
of flow field-flow fractionation was used to fractionate the
SUS-treated oligomers according to the size. The dot-blot-
based solid-phase conversion assays were used to access the
converting activity of different fractionation. Their results
illustrated that the 14–28 mer oligomers had the most con-
verting activity. In contrast, it was demonstrated that the oli-
gomers formed by recPrPs possessed the almost identical
neurotoxicity in vitro and in vivo [26]. These results showed
that b-sheet-rich oligomers rather than a-helix-rich mono-
mers or amyloid fibrils were toxic to cortical neurons in
culture [102].

Recently, Kudo et al. [103] found PrPC is involved in the
oligomeric amyloid-b-induced neuronal cell death. They
showed that Prnp2/2 mice were resistant to the neurotoxic
effect of the Ab oligomer in vivo and in vitro. The anti-PrPC

could prevent the Ab oligomer-induced neurotoxicity. These
results demonstrated that PrPC mediated the process of Ab

oligomer-induced neuronal cell death (Fig. 6). Moreover, the
antibody 6D11 binding to PrPC(93–109), could prevent
neuronal cell death induced by the Ab oligomer. Contrarily,
another antibody 6H4 binding to PrPC(144–152), failed to
block the process. These results indicated that the residues
93–109 might be responsible for binding the Ab oligomer
and inducing the neurotoxicity in cells. Lauren et al. [56]
showed that antibody binding this region could prevent the
interaction of PrPC with the Ab oligomer and stop the Ab

oligomer-induced synaptic dysfunction. These observations
strongly support the hypothesis that PrP contributes to neuro-
toxic signaling induced by Ab oligomers, and mediates
neuronal cell death.

Conclusion

The prion oligomer adopts a soluble, neurotoxic, b-sheet-
rich form. More and more evidence demonstrated that the
oligomers are the most infectious prion protein particles.
Although there is no controversy on the neurotoxicity of
the oligomers, the exact pathologic mechanism remains
unclear. Furthermore, the pathogenetic mechanisms of prion
diseases and other PMDs such as AD and PD are vague. The
latest ‘coups de theatre’ in prion diseases is the observation
that PrPC is a high-affinity cell-surface receptor for soluble
Ab oligomers on neurons, and is also a mediator of Ab

oligomers-induced synaptic dysfunction. This discovery
would promote the study regarding the biological function of
PrPC in vivo.

Since amyloid fibrils were supposed to be the pathogen
in prion diseases, scientists have been considering amyloid
fibrils as the drug target [104]. Dozens of lead compounds

have been developed with the aim to stop the assembling of
amyloid proteins in the brain. However, 10 years has past
with little advance in the healing of the class of misfolding
diseases. Almost all the drugs in clinical use were
announced failure in the curative effect to AD, PD, or prion
diseases. The toxic assays show that the most pathogenic
factors in prion diseases are prion oligomers. The same
phenomenon occurred in the researches of AD, and the
results showed that the soluble Ab oligomer is the crucial
factor responsible for neuronal synapses. All the evidence
indicated that protein oligomers possess the most significant
neurotoxicity and would be the potential drug targets.
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