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Prion diseases, or transmissible spongiform encephalop-
athies, are neurodegenerative diseases, which affect human
and many species of animals with 100% fatality rate. The
most accepted etiology for prion disease is ‘prion’, which
arises from the conversion from cellular PrPC to the patho-
logical PrPSc. This review discussed the characteristic
structure of PrP, including PRNP gene, PrPC, PrPSc, PrP
amyloid, and prion strains.
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Introduction

Transmissible spongiform encephalopathies (TSEs), or
prion diseases, are neurodegenerative conditions caused by
prions, which was characterized by cognitive and motor
impairments, neuronal dysfunction, extensive brain damage,
and finally death. TSEs may occur in human and various
animals, such as Creutzfeldt-Jakob disease in humans [1],
scrapie in sheep [2], bovine spongiform encephalopathy
(also known as mad cow disease) in cattle, and chronic
wasting disease in deer [2]. The infectious agents consist of
PrPSc, a misfolded and aggregated form of the cellular
prion protein (PrPC). This review will discuss the latest
findings about the structure of PrP and its association with
the phenotypes of prion diseases.

PRNP Gene

The PrP protein is encoded by a chromosomal gene, PRNP.
Besides PRNP, there are some members of the Prn gene
family including Prnd, the doppel protein encoded gene
[3], and Sprn, the shadoo protein encoded gene [4]. The
full-length open reading frame (ORF) of all known mam-
malian and avian PrP genes locates in a single exon [5–8].

The Syrian hamster PrP (SHaPrP) gene has two exons,
which are separated by a 10-kb intron. The exon 2 includes
the ORF and 30 untranslated regions, and exon 1 includes a
part of the 50 untranslated leader sequence [6]. The mouse,
rat, cattle and sheep PrP genes contain three exons and the
ORFs for PrP locate in exon 3 [9–13]. Additionally, an un-
translated 50 exon was discovered in the genes of SHaPrP
[14] and human PrP (HuPrP) [15]. The PrP promoter con-
tains multiple copies of GC-rich repeats, which is a canon-
ical binding site for the transcription factor Sp1 [16],
leading to expressing in different tissues, such as brains,
muscles, and some immunocytes, and the highest levels of
PrP mRNA are found in neurons by in situ hybridization
[17]. The alignment of the ORFs for PrP proteins from
more than 40 species shows a conspicuous conservation
among the mammals, suggesting an important role of PrP
in the evolution progress.

PrPC

PrP is a cell membrane protein. In the process of modifica-
tion after translation, peptide amino acids (aa) 1–22 is
cleaved as signal peptide during trafficking, and peptide
from aa 232 to the end is presented as the glycosyl-
phosphatidylinositol (GPI) anchor. The full length of PrP
protein is from aa 23 to 231. The nuclear magnetic reson-
ance (NMR) structures for normal PrP of some species,
such as mice, humans, Syrian hamsters and cattle, have
been successfully illustrated, sharing common features: a
long, flexible amino-terminal tail (residues 23–128), three
a-helices, and a two-stranded anti-parallel b-sheet that
flanks the first a-helix [18]. The second b-sheet and the
third a-helix are connected by a large loop with interesting
structural properties [19]. Fourier-transform infrared and cir-
cular dichroism studies showed that PrPC contains about
40% a-helix and a small amount of b-sheet [20]. The carb-
oxyl terminus of PrPC is stabilized by a disulfide bond that
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links helices two and three [21] and exhibits a globular
structure. A crystal structure of PrP has been obtained,
largely in agreement with the NMR structures [22].

In the unstructured N-terminal of PrP molecule, there are
two defined and conserved regions. The first region consists
of a segment of five repeats of eight amino acids sequence
(octapeptide repeat region, OR) [18]. This region is import-
ant to bind with divalent metal ions, like copper [23,24] and
zinc [25], and could be involved in prion pathogenesis
[26,27]. The second region contains a highly hydrophobic
and conserved profile, which is proposed to be the trans-
membrane region of the PrP molecule. In addition, the
region around histidine-96 in PrP is believed to be the
binding site for manganese [28] and zinc [25], which may
also contribute to the pathogenesis of prion diseases.
Besides metal ions, unstructured N-terminal region also
interacts with a broad range of partners. It shows binding ac-
tivity with small unilamellar vesicles containing phosphati-
dylserine, particularly at acidic pH, by residues 23–145.
Binding lipids may increase the ordered conformation of
this normally flexible domain [29]. N-terminal of PrPC pos-
sesses binding activity with nucleic acid, in which the
binding sites are mapped to residues 23–108 or 23–52
[30]. Deletion of the OR (rPrPD51–90) abolishes the ability
of binding to RNA [31–33]. Recombinant PrP can bind
with DNA and RNA molecules in vitro and induces the
assembly of condensed nucleoprotein structures [30,34]. A
cytoplasmic PrPC mutant can even interact with mRNAs
[35]. Sulfated glycosaminoglycans (GAGs) were detected in
PrPSc plaques in the brain of Gerstmann-Sträussler-
Scheinker syndrome, CJD and scrapie [36]. Several binding
domains for GAGs were identified within N terminal of
PrPC. Residues 23–35 are revealed as a strong binding site
for heparin, a highly sulfated GAG [37], and other binding
sites include residues 23–52, 53–93, and 110–128 [38].
Accurately, Lys23, Lys24, Lys27, Lys101, and histidine
residues in the OR [39] are responsible for the binding. As
mentioned previously, although ORs are involved in
binding Cu2þ, Cu2þ enhances heparin binding to PrPC

rather than competes with it [37,38,40], which may through
a conformational change in the N-terminus of PrP [39].
Multiple iron-containing protoporphyrin IX or hemin mole-
cules bind to residues 34–94 of hamster recombinant PrP
(rPrP) [41]. However, the role of hemin-PrPC interactions
remains unclear. Interestingly, some antiprion compounds
that prevent the conversion of PrPC into PrPSc, like sulfated
glycans, sulfonated dyes, and phosphorothioate oligonucleo-
tides, show binding activities to N terminal of PrPC. They
might competitively interact with PrPC and accordingly
block the interaction between PrPC and endogenous GAG
that could be required for the conversion to PrPSc [42,43].

Our lab has identified many protein ligands binding to
PrPC. Tubulin interacts with rPrP and the sites were mapped

in the N-terminus of PrP spanning residues 23–50 and 51–
91, in which PrP octapeptide repeats are critical for the
binding activity with tubulin [44]. PrP can interact with
microtubule associated protein Tau and the octapeptide
repeats within PrP, which directly affects the binding activ-
ity of PrP with Tau [45]. Another cell skeleton protein,
tubulin polymerization promoting protein, interacts with PrP
and the binding site of PrP locates at the segment spanning
residues 106–126 [46]. Our data highlight a potential role
of PrP in regulating the microtubule dynamics in neurons.
The recombinant full length PrP interacts with ApoE by the
N-terminal of PrP (aa 23–90) [47] and may be involved in
the conformational change of PrPC. Bioinformatics analysis
predicted that a panel of proteins could interact with PrP and
some of them have been confirmed experimentally to be
able to bind with PrP, even within PrP N-terminus [48]. It
highlights that the N-terminal segment of PrP possesses
active biological functions.

Besides the wild-type PrP, there are various mutant PrPs,
which can cause familial CJD in human. Some structures
of PrP mutants have been unraveled. T188K gCJD, which
is the most frequent gCJD in China, almost does not alter
the native structure of PrP, but perturbs its stability and
makes it accumulate more easily [49]. Fatal familial insom-
nia is the most frequent genetic prion disease in China and
the corresponding mutation is D178N/M129. This point
mutation is believed to induce the absence of a salt bridge
that causes the instability of the mutant PrP [50]. In add-
ition, the mutants of V180I, T183A, E196K, F198S,
E200K, R208H, V210I, and E211Q seem to preserve the
native state, but the dynamic changes would perturb the co-
ordination of the a2-a3 hairpin to the rest of the molecule
and cause the reorganization of the patches for intermolecu-
lar recognition [51].

PrPSc

The most special features of PrPSc are its resistance to pro-
tease and its insolubility in detergent. So far, neither crystal
nor solution-based NMR has been obtained. However, it is
well known that when PrPC converts to PrPSc, the content
of b-sheet increases dramatically from about 3%, to
roughly 45%, while the content of a-helix reduces slightly
from 40% to about 30% [20]. The cleavage site of protease
within PrPSc usually locates around the residue 90 and pro-
duces the protease-resistant core of aa 90–231, which has
an apparent molecular mass of 27–30 kDa, therefore, re-
ferred as PrP27–30 [52]. X-ray crystallographic structure of
the prion protein from residues 90–231 is available [53]. It
has been demonstrated that the crystal structure of the
human prion protein is a dimer, which results from the
three-dimensional swapping of the C-terminal helix 3 and
rearrangement of the disulfide bond. An interchain links
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two stranded antiparallel b-sheet is formed at the dimer
interface by residues that are located in helix 2 in the mono-
meric NMR structures. This result has provided the clue for
the details of conversion from PrPC to PrPSc. The computa-
tional modeling revealed that substructure for PrPSc is the
trimeric, left-handed b-helices [54]. Additionally, X-ray
diffraction patterns obtained from PrP 27–30 fibers were
consistent with this model [55].

Prion Amyloid

In the presence of detergent, PrP27–30 polymerizes into
amyloid [56]. After formation of amyloid, the PrP can be
visualized by Congo red dying. Electron microscopy of
negative staining repeatedly demonstrated the irregular rod-
shaped particles in the lesions [57]. Unlike conventional
viruses, prion rods usually are not uniform [58]. Those
special features of prion amyloid have been turned into
useful detection tools for prion [59]. Although amyloid
plaques exist in some kinds or subtypes of animal and
human prion diseases [60–62], they are not the indispens-
able hallmark of prion diseases. Only about 10% of sporadic
Creutzfeldt-Jakob disease cases show amyloid plaques in
their brain tissues, in contrary to kuru that 70% cases
contain detectable plaques. Interestingly, all variant
Creutzfeldt-Jakob disease (vCJD) cases show very special
amyloid plaques that are surrounded by a halo of spongi-
form degeneration, namely florid plaque [63,64], which is
used as the definite diagnostic criteria for vCJD. Although
partial resistance to protease digestion has been a convenient
tool for distinguishing PrPSc from PrPC, not all PrPSc mole-
cules are non-proteolysis [65–69]; these protease-sensitive
PrPSc forms are designated as sensitive PrPSc (sPrPSc).
Recently, it has been proved that sPrPSc is infectious and
shares basic structural features with PK-resistant PrPSc [70].

Topology of PrP Protein

Besides the different secondary structures of PrPC and
PrPSc, PrPC can adopt multiple membrane topologies. As
mentioned previously, PrPC is attached to the outer leaflet
of the plasma membrane through the GPI anchor, which is
referred to SecPrP [71,72]. When expressing the full-length
PrP in cultured mammalian cells, two diverse transmem-
brane orientations may form, which are designated as
NtmPrP and CtmPrP [73–79]. NtmPrP and CtmPrP span the
lipid bilayer once via a highly conserved hydrophobic
region (aa 111–134), leaving the N or C terminus on the
extracytoplasmic side of the membrane, respectively. They
are generated along with the normal biosynthesis of wild-
type PrP in the endoplasmic reticulum. Expressions of the
mutations occurred within or near the transmembrane
domain, such as A117V mutation linked to GSS, G114V

linked to fCJD, as well as several ‘artificial’ mutations not
seen in human patients, and the amount of cellular CtmPrP
increases [75,80,81]. Moreover, a non-conservative substi-
tution (L9R) within the hydrophobic core of the signal
sequence can also enhance the portion of CtmPrP [82].
Combining this mutation with a triple substitution (3AV)
within the transmembrane domain results in a molecule that
is synthesized exclusively as CtmPrP. Point mutations
(M232R and M232T) in the GPI signal peptide (GPI-SP)
of the PrP protein, which segregate with familial CJD, also
exhibited a CtmPrP topology [83]. CtmPrP is neurotoxic and
induces neuron apoptosis. Another topological variant of
PrP that has been proposed as a neurotoxic intermediate is
cytosolic PrP. The artificial form of PrP, which lacks the
signal sequence, presumably favors accumulation of PrP in
the cytoplasm [84].

Prion Strains

In contrary to conventional viruses, prions are composed
only of proteins, and their replication requires merely the
conversion of host PrPC to PrPSc. Hence, differences exhib-
ited by prion strains are hard to be attributed to genetic
variability [85]. Prion strains isolated from naturally
occurred TSEs may vary largely in many essential events,
e.g. incubation periods, clinical manifestations, neuropatho-
logical characteristics, patterns of PrPSc in brains, PrPSc mo-
bility in electrophoresis, resistances to the detergent and
protease, patterns and ratios of three glycosylated PrPSc

[66,86–88]. These traits are often conserved on serial trans-
missions in natural infections or bioassays [89,90]. More
and more evidences have indicated that the prion strains
can be created in vitro. The artificial prion was first
reported in 2004 by Prusiner’s group. They have synthe-
sized mouse prion with recombinant PrP protein that causes
the wild type and the transgenic mice undergoing neuro-
logical dysfunction after inoculation [91]. Subsequently,
they have demonstrated that inoculating the mice with the
synthetic prions with more labile structure causes experi-
mental TSE with shorter incubation periods. It suggested
that except for the factors we have known, the incubation
time of TSEs may be affected by the conformations of
prions [92]. Furthermore, they have verified that the syn-
thetic protease-sensitive prions are able to cause the trans-
genic mice Tg9949 (over-expressing N-terminal truncated
PrP) to be infected [69]. Wang et al. [93] have successfully
generated the infectious prion with the bacterially expressed
recombinant PrP protein. Barria et al. [94] also described
that de novo generated prions induces a new disease
phenotype. It seems that prion strains may arise from con-
formational variability, that is, PrP can assume several dif-
ferent, self-propagating conformations, each of which
enciphers a distinct prion strain. However, the exact
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molecular and structural mechanisms between conform-
ational variability and pathological phenotype of prions still
remain unclear.

Concluding Remark

In conclusion, the conversion from PrPC to PrPSc is the
most important event in pathogenesis of prion diseases, but
there are still many gaps, especially the association of the
tertiary structure of prion with the diverse pathologies of
TSEs, such as, existences of numerous human and animal
prion strains and various human genetic prion diseases,
need to be filled. Therefore, continuous efforts for under-
standing the relationship between structure and phenotype
of prion may shed light on the mysterious processing and
develop the therapy for the disease.
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