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Plants in their natural environment frequently face various
abiotic stresses, such as drought, high salinity, and chilling.
Plant mitochondria contain an alternative oxidase (AOX),
which is encoded by a small family of nuclear genes. AOX

genes have been shown to be highly responsive to abiotic
stresses. Using transgenic plants with varying levels of AOX

expression, it has been confirmed that AOX genes are im-
portant for abiotic stress tolerance. Although the roles of
AOX under abiotic stresses have been extensively studied
and there are several excellent reviews on this topic, the
differential expression patterns of the AOX gene family
members and the signal regulation of AOX gene(s) under
abiotic stresses have not been extensively summarized.
Here, we review and discuss the current progress of these
two important issues.
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Introduction

Abiotic stresses, such as drought, high salinity, and chilling,
limit the growth, development, and production of plants [1].
Considering the importance of mitochondria in the energy
and substance metabolism of plant cells, mitochondrial re-
spiratory metabolism is expected to play important roles in
abiotic stress tolerance.

A key to understand the role of mitochondria under abiotic
stresses is to learn the differences in the features of respiratory
metabolism between plant and animal mitochondria. In the
plant mitochondrial electron transport chain, there is a unique
component, alternative oxidase (AOX), which is located in
the mitochondrial inner membrane and catalyses the alterna-
tive respiratory pathway. In higher plants, electrons produced
by the respiratory oxidation of nicotinamide adenine dinu-
cleotide can flow from ubiquinone directly to AOX and thus
bypass two of the three sites of energy conservation

supporting oxidative phosphorylation (complexes III and IV).
This causes plants to dissipate the redox energy into heat
instead of ATP production [2].

Many studies showed that most, if not all, abiotic stresses,
including drought, high salinity, chilling, high light, high tem-
perature, metal toxicity, and nutrient limitation can increase the
amounts of AOX protein or mRNA [3–11]. In recent years,
transgenic plants with varying levels of AOX gene expression
have provided molecular evidence that AOX actually contri-
butes to abiotic stress tolerance [10,12–18]. Furthermore, the
following mechanisms by which AOX is involved in the toler-
ance of plants to abiotic stress have also been studied: (i) AOX
can limit the excessive generation of reactive free radicals,
such as reactive oxygen species (ROS) and reactive nitro-
gen species, and maintain the redox balance in plant cells
[12,14,19,20]; (ii) AOX is important for optimizing photosyn-
thesis, especially when photosynthesis is impaired by abiotic
stresses [3,21,22]; (iii) AOX plays important roles in plant
metabolic adaptation to abiotic stresses by modulating
carbon-use efficiency and the balance of carbon and nitrogen,
the NAD(P)H/ATP ratio, and the ATP/ADP ratio [7,9,23–25].
Readers who are interested in the roles and mechanisms of
AOX in resisting abiotic stresses are suggested to refer to re-
cently published papers [24,26–28]. Up to now, however, two
important issues regarding the role of AOX under abiotic stres-
ses have not been extensively summarized and reviewed. First,
AOX is encoded by a small gene family in higher plants [29].
Some studies have shown that the AOX genes display differen-
tial expression patterns under abiotic stresses (see below). To
learn which AOX gene(s) is/are the potential candidate(s) for
selecting abiotic stress-tolerant cultivars for agronomic traits,
the expression patterns of the AOX genes under abiotic stresses
is very important. Secondly, many signal molecules related to
abiotic stresses have been reported to induce AOX gene expres-
sion (see below), indicating that there might be a complex
regulatory signaling mechanism for the induction of AOX
gene(s) under abiotic stresses. Thus, this review will primarily
focus on the expression and regulation of AOX gene(s) under
abiotic stresses.
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Expression of AOX Genes under Abiotic
Stresses

The family of nuclear genes encoding AOX
It is known that there is a small family of nuclear genes en-
coding AOX in higher plants. Molecular identification studies
of AOX genes from different plant species have revealed that
there are at least two discrete AOX gene subfamilies,
AOX1-type and AOX2-type genes. AOX1 is present in both
monocot and eudicot plant species, but AOX2 is absent in all
monocot species [29]. Many members of the AOX gene
family have been isolated and characterized, especially in
model plants and some important crops (Table 1). There are
three AOX genes identified in the soybean [AOX1, AOX2a
(previously named AOX2), and AOX2b (previously named
AOX3)] [30], rice (AOX1a, AOX1b, and AOX1c) [31], and
maize (AOX1a, AOX1b, and AOX1c) [32]; two AOX genes in
tobacco (AOX1 and AOX2) [33] and wheat (AOX1a and
AOX1c) [34]; and five AOX genes in Arabidopsis thaliana
(AOX1a, AOX1b, AOX1c, AOX1d, and AOX2) [35] (Table 1).

Differential expression of AOX genes under abiotic
stresses
In some studies, specific probes were used to precisely show
differential expression of AOX gene family member(s) under
abiotic stresses. For example, in leaves of A. thaliana, the
AOX1a gene was induced by chilling stress, while the
AOX1b, AOX1c, and AOX2 genes were not responsive.
AOX1d even exhibited decreased expression under this stress
[35]. In the roots and leaves of rice seedlings, the AOX1a and
AOX1b genes were induced by chilling, drought, and high
salt, whereas the AOX1c gene was not responsive to these
stresses [36,37]. Studies in rice seedlings further showed that
the AOX1b gene exhibited a similar expression profile to
AOX1a under chilling, drought, and high salt, but the tran-
script abundance of AOX1b was relatively lower [36,38].
These observations indicated that there are qualitatively and
quantitatively different expression patterns among different
AOX genes under abiotic stresses. Thus, a study that only
investigates the changes of total AOX protein or mRNA ex-
pression cannot reflect the actual changes of transcripts of dif-
ferent AOX genes under abiotic stresses. More importantly,
considering that different isoforms of AOX proteins encoded
by different AOX genes have different catalytic properties and
activities [39], information about the changes of different
AOX expression levels under abiotic stresses is valuable in
evaluating their physiological functions.

The induction of AOX genes is associated with plant
tolerance of abiotic stresses
Table 1 summarizes the available information about the ex-
pression of various AOX genes induced by abiotic stresses in

plant species that are often used in plant physiology research.
Among these AOX genes, AOX1a is the most intensively
studied and is the most responsive to stress. In Arabidopsis,
this gene is induced by most abiotic stresses including
drought, chilling, high salt, high light, and limitation of
nitrogen [4,6,23,40,41]. Furthermore, using transgenic
A. thaliana with varying expression levels of AOX1a, it
demonstrated that the induction of AOX1a under abiotic
stresses is actually associated with the tolerance of plants. It
was observed that Arabidopsis plants expressing antisense
AOX1a showed greater susceptibility to drought [12], low
temperature [13], and high light [6] compared with wild-type
plants. Furthermore, Arabidopsis plants constitutively over-
expressing AOX1a gene had greater tolerance to high salt
and low temperature stress than wild-type plants [14,15].

In addition to AOX1a, other AOX genes are induced by
abiotic stresses. For example, the transcript of Arabidopsis
AOX1b displayed similar increase to AOX1a under high light
stress [6]. Furthermore, compared with wild-type Arabidopsis,
the leaves of both AOX1a-deficient and AOX1b-deficient
mutants were more severely photodamaged by high light [6].
This indicates that AOX1b, possibly in combination with
AOX1a, may have important benefits for the adaptation of
plants to high light stress. The level of AOX1a mRNA in
Arabidopsis leaves under high light was higher than that of
AOX1b mRNA, and the photodamage in AOX1a-deficient
mutants was also more severe than that in AOX1b-deficient
mutants under high light [6]. These observations indicated
that different AOX genes with quantitatively different induc-
tion levels under abiotic stresses could have different contri-
butions to plant tolerance to abiotic stresses. In conclusion,
qualitative and quantitative analysis of the expression patterns
of AOX gene family members in various plant species and
under various types of abiotic stresses are helpful in under-
standing the importance or contribution of different AOX
genes to plant abiotic stress tolerance, especially when we
need to learn which AOX gene(s) could be used as potential
candidates for breeding abiotic stress-tolerant cultivars.

Possible Signal Transduction Inducing AOX
Gene Expression under Abiotic Stresses

Reactive oxygen species
One early response of plant cells to abiotic stresses is the
significant increase of the production of ROS, including
singlet oxygen (1O2), the superoxide radical (O2

2), hydro-
gen peroxide (H2O2), and the hydroxyl radical (HO†)
[57]. It has been found that treatment with exogenous
H2O2 or O2

2 generators can induce AOX expression
[58,59], while the addition of H2O2 or O2

2 scavengers par-
tially suppresses the induction of the AOX transcript
under drought and salt stresses [60,61]. These observations

AOX genes under abiotic stress
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Table 1 Summary of the main observations of the expression of AOX genes in some representative plant species under abiotic stresses

AOX

gene

Chilling Drought High salt Light stress Nutrient

limitation

Ozone Metal toxicity Heat

stress

Reference

Monocot

Wheat [34,42]

AOX1a þ in leaves nd nd nd nd nd nd nd

AOX1c þ in leaves nd nd nd nd nd nd nd

Rice [31,36–

38,43–45]

AOX1a þ in leaves, roots, and

shoot

þ in leaves, roots, and shoot þ in leaves, roots, and shoot 2 in leaves nd nd nd þ in shoot

AOX1b þ in leaves, roots, and

shoot

þ in leaves, roots, and shoot þ in leaves, roots, and shoot 2 in leaves nd nd nd þ in shoot

AOX1c 2 in leaves, roots, and

shoot

2 in leaves, roots, and shoot 2 in leaves, roots, and shoot þ in leaves nd nd nd þ in shoot

Maize

AOX1a nd nd nd nd nd nd nd nd

AOX1b nd nd nd nd nd nd nd nd

AOX1c nd nd nd nd nd nd nd nd

Dicots

Arabidopsis

thaliana

[4,6,14,

35,40,41,

46–50]

AOX1a þ in leaves, root,

callus, and suspension

cells

þ in leaves and roots þ in leaves, roots, and callus þ in etiolated

seedlings

þ in shoot and

root by low N

nd þ in mesophyll

protoplasts by

Al stress

nd

AOX1b 2 in leaves, callus, and

suspension cells

2 in leaves nd þ in etiolated

seedlings

þ in shoot by

low N; 2 in

roots by low N

nd nd nd

AOX1c 2 in leaves; þ in callus

and suspension cells

nd nd þ in etiolated

seedlings

þ in shoot by

low N; 2 in

roots by low N

nd nd nd

AOX1d � in leaves; 2 in callus nd þ in seedlings þ in etiolated

seedlings

þ in shoot and

root by low N

nd nd nd

AOX2 2 in leaves, callus, and

suspension cells

nd nd 2 in etiolated

seedlings

þ in shoot by

low N; 2 in

roots by low N

nd nd nd

Continued

AO
X

genes
underabiotic

stress

Acta
Biochim

Biophys
Sin

(2013)|Volum
e

45
|Issue

12
|Page

987

D
ow

nloaded from
 https://academ

ic.oup.com
/abbs/article/45/12/985/1085 by guest on 09 April 2024



Table 1 Continued

AOX

gene

Chilling Drought High salt Light stress Nutrient

limitation

Ozone Metal toxicity Heat

stress

Reference

Soybean [30]

AOX1 þ in suspension cells nd nd nd nd nd nd nd

AOX2a nd nd nd nd nd nd nd nd

AOX2b nd nd nd nd nd nd nd nd

Tobacco [10,16,17,

51–54]

AOX1 þ in leaves þ in leaves particularly

combined with increased

irradiance

þ in leaves nd nd þ in

leaves

þ in suspension

cell by Al stress;

� in leaves by

CoCl2

nd

AOX2 nd nd nd nd nd þ in

leaves

nd nd

Cowpea [55,56]

AOX1 þ in leaves þ in leaves; 2 in roots 2 in roots nd nd nd nd nd

AOX2a 2 in leaves 2 in leaves 2 in roots nd nd nd nd nd

AOX2b þ in leaves þ in leaves; þ in roots of the

drought-/salt-tolerant

cultivar; 2 in the roots of

sensitive cultivar

þ in roots of the drought-/

salt-sensitive cultivar; 2 in

the roots of tolerant cultivar

nd nd nd nd nd

‘þ’ indicates an increase in the transcript abundance of this AOX gene under the given abiotic stress; ‘�’ indicates a decrease in the transcript abundance of this AOX gene under the given abiotic stress;

‘2’ indicates that this AOX gene is not responsive (or undetectable) under the given abiotic stress. ‘nd’ indicates that the expression of this AOX gene under the given abiotic stress has not been determined.
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suggested that ROS can initiate signaling for AOX gene
expression under abiotic stresses.

In plant cells, O2
2 dismutates very rapidly into H2O2 either

spontaneously or through the action of superoxide dismutase
(SOD) [62]. Among these ROS, H2O2 has the longest half-life
and the ability to permeate through cell membranes [57]. One
hypothesis originally suggested that H2O2 is responsible for
the ROS-induced expression of AOX genes by directly oxidiz-
ing transcription factors or modulating the phosphorylation
processes of transcription factors [58,63,64]. However, ex-
ogenous H2O2 treatment caused a faster increase in cytoplas-
mic H2O2 than treatment with the artificial mitochondrial
ROS (mtROS) generator antimycin A (a chemical inhibitor of
mitochondrial electron transport). However, antimycin A
caused faster induction of AOX1 expression than exogenous
H2O2 treatment [65]. In a recent study, it was found that mito-
chondrial SOD, rather than cytoplasmic and chloroplast SOD,
attenuated the expression of rice AOX1a and AOX1b under
conditions of drought, high salinity, and chilling [37]. These
findings indicated that the mtROS production is more efficient
in inducing AOX gene expression than cytoplasmic or chloro-
plastic ROS, and thus the induction of AOX genes can hardly
be explained by the above hypothesis alone. Currently, an
alternative hypothesis to explain the ROS-induced expression
of AOX genes is that ROS can cause the opening of the

mitochondrial permeability transition pore (MPTP), which is
a crucial step in AOX gene expression [65,66]. It is supported
by observations that the opening of the MPTP may be pro-
moted by ROS [65,67], and pre-treatment with bongkrekic
acid, a known inhibitor of MPTP, completely blocked the
expression of AOX genes induced by antimycin A and H2O2

[65]. Such a mechanism can explain the faster induction of
AOX genes by mtROS-inducing factors, because ROS pro-
duced directly from mitochondria is more efficient in opening
the MPTP than cytoplasmic or chloroplastic ROS [65,66].

Other signal molecules
In addition to ROS, salicylic acid (SA), nitric oxide (NO),
jasmonate (JA), calcium ion (Ca2þ), and ethylene (ET) are
reported to be accumulated under abiotic stresses [68]. All
these signaling molecules have the ability to induce AOX
genes [51,69–71]. These signaling molecules may also be
responsible for the induction of AOX genes under abiotic
stresses. SA, NO, and JA have been reported to cause an
increase in mtROS by inhibiting cytochrome oxidase or dis-
rupting mitochondrial electron transport [72–74]. ET and
Ca2þ are known to induce ROS production or directly in-
crease mitochondrial permeability [75,76]. Thus, these sig-
naling molecules induce AOX genes either by increasing
ROS production or by directly affecting the MPTP (Fig. 1).

Figure 1 A working model of the potential signaling pathways for the induction of AOX gene(s) under abiotic stresses The model suggests that

abiotic stress-induced signaling molecules, which include ROS (active oxygen species), SA (salicylic acid), NO (nitric oxide), jasmonic acid (JA), calcium,

and ET (ethylene), could be involved in the induction of AOX gene(s) by opening the MPTP (directly or in directly) or by other mechanisms that do not

involve mitochondria, as indicated by red arrows. Potentiating interactions among these signaling molecules, which are indicated by the green arrows, would

report sufficient intensity of the physiological events to activate the AOX gene(s). Light may induce the AOX gene(s) by increasing ROS production (shown

by blue arrow) or by photoreceptors.

AOX genes under abiotic stress
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Table 2 Summary of the main studies of the potentiating interactions among the signaling molecules

Signal molecule Experimental material Event Reference

SA and NO Arabidopsis roots and cultured cells SA treatment resulted in a strong increase of NO production [84]

Arabidopsis leaves Treatment with NO resulted in accumulation of SA [85]

SA and ROS Tobacco leaves After infiltration with H2O2, the levels of SA were increased [86]

Rice leaves SA treatment resulted in an increase in the contents of endogenous H2O2 [87]

Calcium and NO Maize leaves Treatments with CaCl2 induced increases in the generation of NO and the activity of nitric oxide

synthase. NO donor sodium nitroprusside also led to increases in the concentration of cytosolic Ca2þ
[88]

Calcium and ROS Arabidopsis leaves and roots H2O2 triggered a [Ca2þ]cyt elevation [81]

Arabidopsis roots Ca2þ activated the production of ROS [82]

Calcium and ET Tobacco suspension cells Ethylene-releasing compound (ethephon) induced elevation of [Ca2þ]cyt [89]

Apple fruit Ca2þ stimulated ethylene production [90]

Apple fruit, mung bean hypocotyls Ca2þ stimulated ethylene precursor, ACC, (1-aminocyclopropane-1-carboxylic acid) dependent

ethylene production

Calcium and JAs Arabidopsis leaves Exogenous application of jasmonic acid increased concentration of [Ca2þ]cyt [91]

NO and ROS Maize leaves NO and H2O2 reciprocally enhanced the production of each other [92]

NO and JAs Sophora flavescens suspension cells Treatment with NO enhanced jasmonic acid levels. External application of jasmonic acid stimulates

NO generation

[83]

NO and ET Tobacco leaves NO donor boosted ET accumulation, whereas ET did not induce NO emission [51]

ROS and JAs Panax ginseng suspension cells H2O2 stimulated JA accumulation [93]

Date palm leaves Treatment with jasmonic acid increased levels of H2O2 [94]

ROS and ET Vicia faba leaves Exogenous ethylene induced H2O2 production [95]

Cotton fiber Exogenous H2O2 induced ethylene production [96]
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However, because NO, Ca2þ, JA, ET, and SA have also
been reported to alter the expression of nuclear genes by
other mechanisms that are not involved in ROS or mitochon-
dria [64,77–80], it is possible that these signaling molecules
can induce AOX genes via multiple signaling pathways that
may be ROS (or mitochondria)-dependent and -independent
(Fig. 1).

Interaction among the signaling molecules that induce
AOX gene expression
Under abiotic stresses, ROS, SA, NO, JA, Ca2þ, and ET are
simultaneously existed and accumulated in plant cells. Many
studies have revealed that these signal molecules can interact
with each other in vivo. For example, H2O2 treatment
enhanced the level of cytoplasmic Ca2þ in Arabidopsis roots,
while Ca2þ also activated the production of H2O2 [81,82].
Treatment with NO enhanced the level of JA level in Sophora
flavescens suspension cells, and the external application of JA
also stimulated NO generation [83]. The potentiating interac-
tions among the signaling molecules are summarized in
Table 2 and Fig. 1. We suggested that the signal transduction
that induces the expression of AOX genes under abiotic stres-
ses could be a self-amplifying cycle, in which these signaling
molecules could potentiate each other. The culmination of
this self-amplifying cycle or potentiating interaction will
render sufficient intensity of the physiological or biochemical
events to trigger the MPTP or other mechanisms responsible
for the induction of AOX gene expression.

Light signals
Svensson and Rasmusson [97] found AOX protein in mito-
chondria isolated from light-grown potato leaves, whereas its
amount was dropped to an undetectable level with dark treat-
ment. In tobacco leaves, AOX gene transcripts showed a
marked diurnal rhythm [98]. These observations indicated that
light up-regulates the expression of AOX by changes of the
protein and mRNA abundance. Furthermore, in many studies,
high or constant light further increased the expression levels
of AOX genes [6,44]. It is well known that light, particularly
excess light stress, can increase the leakage of electrons from
the photosynthetic electron transport chain, which can reduce
molecular oxygen to ROS [57]. Considering that ROS can
induce the expression of AOX genes, the induction of AOX
genes under light or excess light could be a result of the in-
crease of intercellular ROS. Zhang et al. [6] revealed that
photoreceptors, including phytochromes, phototropins, and
cryptochromes, also play important roles in the light signal
transduction pathway for AOX gene expression. Thus, it is
reasonable to assume that these two mechanisms could coord-
inate to amplify the intensity of light signals that lead to the
expression of AOX genes (Fig. 1).

Summary and Prospective

AOX is an important component of plant tolerance towards
abiotic stresses. In this review, we focused on the current
understanding of the expression and signal regulation of
AOX genes under abiotic stresses. AOX genes under abiotic
stresses show differential expression patterns and are
induced by multiple signaling pathways. These characteris-
tics may allow AOX to flexibly deal with the challenge of
different types of abiotic stresses. Considering that plants in
their natural environment have to face multiple, simultan-
eous, and inconsistent abiotic stresses, AOX could be a
powerful tool to attain multiple or optimal tolerance to
abiotic stresses. Ultimately, a full understanding of the sig-
nificance of AOX should ideally come from research com-
bining biological, molecular, and agricultural perspectives.
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