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The role of amino acids in the regulation of insulin secre-
tion in pancreatic beta-cells is highlighted in three
forms of congenital hyperinsulinism (HI), namely gain-of-
function mutations of glutamate dehydrogenase (GDH),
loss-of-function mutations of ATP-dependent potassium
channels, and a deficiency of short-chain 3-hydroxyacyl-
CoA dehydrogenase. Studies on disease mouse models of
HI suggest that amino acid oxidation and signaling effects
are the major mechanisms of amino acid-stimulated
insulin secretion. Amino acid oxidation via GDH produces
ATP and triggers insulin secretion. The signaling effect
of amino acids amplifies insulin release after beta-cell
depolarization and elevation of cytosolic calcium.
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Introduction

The importance of amino acid-stimulated insulin secretion
(AASIS) by pancreatic islets has long been recognized [1],
but its mechanisms of action remain poorly understood.
Studies on perfused rat islets in the 1970s found that many
amino acids can only stimulate insulin secretion in the pres-
ence of glucose [2,3]. These glucose-dependent amino
acids include complete mixtures of all 20 amino acids as
well as certain individual amino acids including alanine, as-
paragine, glycine, glutamate, phenylalanine, and tryptophan
[3—8]. Leucine is a notable exception to the rule that
glucose is required for AASIS, since the insulin-stimulatory
effect of leucine in perfused rat pancreas is abolished in the
presence of glucose [9]. In the 1980s, Sener and Malaisse
[10] showed that leucine stimulates insulin secretion by
allosterically stimulating glutamate dehydrogenase (GDH)
activity. The recent discovery of amino acid-sensitive hypo-
glycemia in children with congenital hyperinsulinism (HI)
highlights the important role of amino acids in the regula-
tion of pancreatic beta-cell function, which has long been
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neglected [11]. Congenital HI is a group of diseases that
display dysregulated insulin secretion by pancreatic beta-
cells due to genetic defects. Hyperinsulinemic hypogly-
cemia is a major clinical phenotype [11]. Protein-sensitive
hypoglycemia has been shown to occur in three forms of
HI, namely gain-of-function mutations of GDH (GDH-HI)
[12,13], loss-of-function mutations of ATP-dependent po-
tassium channels (KATP-HI) [14] and a deficiency of the
mitochondrial fatty acid B-oxidation enzyme, short-chain
3-hydroxyacyl-CoA dehydrogenase (SCHAD-HI) [15].
Although the clinical features of protein-induced hypogly-
cemia are similar, the mechanisms of AASIS in these three
forms of HI are different. In this review, we discuss the
mechanisms of amino acid hypersensitivity in HI.

Mechanism of AASIS in GDH-HI

Oxidation of amino acid triggers insulin release

In 1998, mutations of GDH were identified in children with
a dominant form of HI [16]. GDH enzyme activity can be
allosterically inhibited by ATP and GTP, but be activated
by ADP, GDP, and leucine. The GDH reaction plays a key
role in the regulation of the amino acid metabolism. The
impairment of the GTP allosteric inhibition of GDH leads
to a gain of GDH function, which has been found to
have occurred in GDH-HI patients [16,17]. Children with
GDH gain-of-function mutations are sensitive to protein
feeding, and hyperinsulinemic hypoglycemia occurred after
a mixture of amino acid loads. GDH-HI also shows exag-
gerated acute insulin responses to intravenous leucine
stimulation [12,13], and this leucine response can be inhib-
ited by rising blood glucose levels [13]. We hypothesize
that the elevated amino acid oxidation seen by increasing
the flux of glutamate through GDH into o-ketoglutarate,
which leads to the augmentation of ATP production (ATP
then closes the KATP channel and subsequently leads to
beta-cell depolarization and calcium influx), finally acti-
vates the ‘triggering’ pathway for insulin release similar to
glucose-stimulated insulin secretion (GSIS) [18].
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‘Run-down’ phenomenon

In order to test the hypothesis of which GDH activation
leads to increase in amino acid oxidation and ATP produc-
tion, we first performed leucine-stimulated insulin secretion
(LSIS) in isolated rat islets. As shown in Fig. 1(A), after
3 days of culture in 10 mM glucose, islets failed to respond
to LSIS after 50 min of run-down. In contrast, through pro-
longed run-down (up to 120 min) by depleting intracellular
energy, islets became leucine sensitive [19]. This leucine
sensitivity can be completely blocked by pre-exposure to
high concentration of glucose. This run-down phenomenon
in rat islets suggests that GDH may serve as an intracellular
energy sensor; when intracellular phosphate potential is
high, GDH can be inhibited by GTP or ATP, whereas after
run-down, intracellular energy is depleted and GDH gains
the sensitivity for leucine activation.

GDH gain-of-function mutation leads to hypoglycemia

To further examine the hypothesis of which GDH
gain-of-function mutations result in leucine-sensitive hypo-
glycemia in GDH-HI, we generated transgenic (TG) mice in
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Figure 1 Amino acid stimulated insulin secretion in islets from rat, GDH transgenic mice, and SUR1 knockout mice

order to express a severe form of GDH mutation (H454Y) in
beta-cells following a rat insulin promoter. GDH-TG mice
showed a consistent hypoglycemia phenotype [20]. The oral
protein tolerant test showed GDH-TG mice to be sensitive to
amino acid stimulation with rapid falls in blood glucose and
increases in insulin secretion after a mixture of amino acids
challenge [21], similar to GDH-HI patients [12]. GDH
enzyme Kkinetics in isolated islets from H454Y-TG mice
showed a right shift in the GTP inhibition curve, which
confirmed H454Y expression in islets [17]. Dynamic insulin
secretion in perfused islets isolated from GDH-TG mice was
also sensitive to stimulation by amino acid mixture and
leucine, even responding to glutamine alone, whereas control
islets were unresponsive to either glutamine or a mixture of
amino acids [20]. This study thus confirmed that GDH
gain-of-function mutation is disease-causing in GDH-HI.

H454Y GDH transgene results in increased GDH fluxes
and ATP production

To examine the effects of the H454Y GDH mutation on
flux through GDH, the metabolomic approach was applied
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(A) Leucine stimulated

insulin secretion and run-down in rat islets. (B) GDH fluxes in GDH-transgenic mouse islets, vs. wild-type controls, *P < 0.05; vs. Gln 10 mM, “P <
0.05; vs. Gln 10 mM/Leu 10 mM, 2P < 0.05 (n=3). (C) Glutamine-stimulated insulin secretion in SURI knockout mouse islets. (D) Amino acid
mixture-stimulated insulin secretion and cAMP production in SUR1 knockout islets and the effects of Exendin-(9—39), vs. basal, *P < 0.05; vs. AAM,

#P < 0.05 (n = 4-8).
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in isolated islets using a stable isotope tracing technique
with gas chromatography/mass sepectrometry to trace '°N
flux from [2-15N]glutamine to [2-15N]glutamate and subse-
quently to ['°N]Jammonia. These data could then be used to
calculate the specific flux via the GDH reaction. Compared
with wild-type control littermates, in response to 10 mM
[2-'°N] glutamine, H454Y-TG islets have greater insulin
secretion, ammonia production, ['*NJammonia enrichment,
and GDH flux as shown in Fig. 1(B). In control islets, the
activation of GDH with 10 mM leucine leads to an increase
in insulin release, accompanied by increased rates of
ammonia production and a three-fold stimulation of flux
through GDH. The effect of leucine on GDH flux in
control islets was similar to the rates seen in TG islets in
the absence of leucine, suggesting that GDH flux in TG
islets was close to maximal even without leucine activation
[20]. The increased flux of GDH in TG islets results in the
elevation of the ATP/ADP ratio, which is responsible for
the activation of a triggering pathway of insulin release.
The glucose inhibition of LSIS observed in GDH-HI
patients can be explained by the almost complete inhibition
of ammonia production, >N-enrichment of ammonia, and
GDH flux in normal and TG islets by a high level of
glucose; leucine was unable to override this inhibitory
effect of glucose [13,20]. This glucose inhibition of GDH
fluxes reflects the elevated phosphate potential generated
during glucose oxidation and its strong inhibitory effect on
GDH. This study thus provides strong evidence that GDH
serves as an intracellular energy sensor that can sense the
rise and fall of glucose metabolism. In response to the
changes in phosphate potential lead by the glucose metab-
olism, an ‘on and off” switch of GDH will lead to an in-
crease or a decrease of amino acid oxidation in order to
maintain intracellular energy potential.

Epigallocatechin gallate has the therapeutic potential to
treat GDH-HI

GDH-HI caused by increased GDH fluxes and thus the in-
hibition of the mutant form of GDH have therapeutic poten-
tial. Green tea is often emphasized as a rich source of
polyphenols. Among the four major polyphenols in green
tea, namely epigallocatechin gallate (EGCQ), epigallocate-
chin, epicatechin gallate (ECG), and epicatechin, EGCG
and ECG have a strong inhibitory effect on GDH activity
with nanomolar EDs [22]. The co-crystallization of GDH
protein with ECG shows that ECG binds to and hijacks the
ADP activation site, resulting in the inhibition of GDH
enzyme activity [21]. Mutations of the ADP-binding site
(R90S, D123 A, and S3971) disrupt ADP binding as well as
EGCG inhibition, strongly supporting the notion that
EGCG binds to the ADP site. Interestingly, EGCG also
inhibits several disease-causing GTP-insensitive GDH
mutations, including H454Y, since it binds to the ADP site

Acta Biochim Biophys Sin (2013) | Volume 45 | Issue 1 | Page 38

rather than to the GTP site. This special feature of the
EGCG inhibition of GTP-insensitive GDH mutations pro-
vides a therapeutic potential to treat GDH-HI. The experi-
ments on GDH-TG mice indeed showed that pre-exposure
to oral EGCG (100 mg/kg of body weight) diminished
amino acid-induced hypoglycemia in TG mice. EGCG also
blocked glutamine-stimulated calcium influx and insulin se-
cretion in GDH-TG islets, suggesting that the action of
EGCG in GDH-TG mice is on beta-cell insulin secretion
[21]. This study provides the ‘proof of concept’ that GDH
inhibition by small molecules leads to the novel treatment
of GDH-HI, since current treatment that only targets dysre-
gulated insulin secretion using diazoxide, hyperammone-
mia, and neurological abnormalities certainly requires
attention for clinical management [16,23]. Early attempts
have already identified several GDH inhibitors, but further
study is certainly required to pursue this concept [24].

Mechanism of AASIS in SCHAD-HI:
SCHAD-GDH interaction

Recently, a new form of HI has been described that is
associated with a deficiency in SCHAD [25,26]. SCHAD
catalyzes the beta-oxidation cycle for medium and short-
chain 3-hydroxy fatty acyl-CoAs (C4—C10). Children
with  SCHAD deficiency have hypoglycemia and acc-
umulations of fatty acid metabolites, including plasma
3-hydroxy-butyrylcarnitine and urinary 3-hydroxyglutaric
acid. Unlike ketotic hypoglycemia that occurs in the other
genetic defects of fatty acid oxidation, hypoglycemia in
SCHAD deficiency results from HI [27]. In order to investi-
gate the mechanisms responsible for hypoglycemia in
SCHAD deficiency SCHAD-knockout (KO) mice were gen-
erated [28]. SCHAD-KO mice have lower plasma glucose
levels than controls in both fed and fasting states. The plasma
acylcarnitine profiles of SCHAD-KO mice showed a four-
fold elevation in plasma 3-hydroxy-butyrylcarnitine com-
pared with controls and they were similar to those values
reported in children with SCHAD deficiency. Compared with
wild-type mice, SCHAD-KO mice showed a rapid decline in
blood glucose after receiving oral amino acids, which was
due to the stimulation of insulin release in response to amino
acids in KO mice, similar to the protein-induced hypogly-
cemia seen in patients with SCHAD deficiency. Moreover,
SCHAD-KO mice have comparable glucose tolerance test
results compared with control littermates. Studies of isolated
islets have confirmed these in vivo findings. SCHAD-KO
islets are also very sensitive to stimulation with a physiologic-
al mixture of amino acids similar to islets from GDH-TG
mice, but they have a higher threshold of AASIS. When
glutamine and leucine were both removed from the amino
acid mixture, KO islets were completely unresponsive, indi-
cating that GDH activation was essential for abnormal insulin
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release. KO islets were also more sensitive to leucine stimula-
tion but unlike islets from GDH-TG, failed to respond to glu-
tamine alone. The insulin secretion results indicated an
activation of GDH in SCHAD-KO islets, but not as active as
GDH gain-of-function mutations. GSIS was similar between
KO and wild-type islets, suggesting that HI in SCHAD-KO
mice is not due to altered GSIS as hypothesized [29]. The
measurement of GDH enzyme kinetics indicated that KO
islets show a normal response to GTP inhibition, but have a
reduced affinity for the GDH of a-ketoglutarate, but not
ammonia, suggesting that the presence of SCHAD protein
affects the binding of the substrate in the catalytic site. The
effect was limited to islet GDH, perhaps reflecting the high
levels of SCHAD and high ratio of SCHAD to GDH in islet
tissue [28,30]. We further examined the possibility of
protein—protein interactions between the two enzymes.
When an anti-SCHAD antibody was used as bait, GDH
was co-precipitated with SCHAD in wild-type mouse liver
mitochondria, but not in KO mice, consistent with a GDH—
SCHAD protein complex in wild-type liver mitochondria.
Our findings suggest that GDH activation in SCHAD
deficiency is due to the loss of a direct protein—protein inter-
action between the two enzymes. It is interesting to speculate
that the inhibitory effect of SCHAD on GDH might be part
of a mechanism for the reciprocal control of fatty acid and
amino acid oxidation. Indeed, GDH may be the central regu-
latory step in the metabolic interaction, including glucose,
fatty acid, and amino acid. Further studies have found that
SCHAD not only binds to GDH, but also associates with
other proteins, such as carbamoyl phosphate synthase 1,
citrate synthase, glutamine syntheses, pyruvate dehydrogen-
ase, and ATP synthase [31], which involves ureagenesis, the
metabolism of glucose, amino acid, and ATP production,
highlighting the complexity of SCHAD interaction.

Mechanism of AASIS in KATP-HI

The signaling effect of amino acids

The loss function mutation of KATP channels is the most
common and severe form of HI, which often requires pan-
createctomy to control hypoglycemia [11]. Interestingly,
KATP-HI also has protein-sensitive hypoglycemia [14]. To
investigate the mechanism of protein-induced hypogly-
cemia in KATP-HI we examined insulin secretion in islets
from SUR1-KO mice [32,33]. SUR1-KO islets showed ele-
vated basal intracellular calcium and basal insulin secretion,
which is a characteristic feature of dysfunctional KATP
channels. Unlike wild-type islets, SUR1-KO islets showed
no response to leucine- or glucose-stimulated insulin
release, but do release insulin in response to a mixture of
amino acids and glutamine [Fig. 1(C)]. The paradoxical
effect of glutamine and leucine on insulin secretion was un-
likely to be caused by glutamine oxidation via GDH, since

the activation of GDH by leucine failed to stimulate insulin
secretion and the sensitivity to glutamine was not inhibited
by 6-diazo-5-oxo-L-norleucine, a glutaminase inhibitor, can
block glutamine oxidation. Therefore, we hypothesize that
glutamine may have specific effects on downstream ampli-
fication pathways for insulin release, distal to the elevation
of cytosolic calcium. Recent studies suggest that the signal-
ing effect of glutamine may involve cAMP-dependent path-
ways [34], as evidenced by the fact that amino acids
stimulate cAMP production while stimulating insulin secre-
tion in SUR1-KO mouse islets [Fig. 1(D)]. A similar effect
can be obtained by using glutamine alone (unpublished ob-
servation). Additional evidence has also supported the hy-
pothesis that the inhibition of the GLP-1 receptor by its
antagonist, Exendin-(9—39), decreases baseline intracellular
cAMP and blocks the stimulatory effect of amino acids on
both cAMP production and insulin secretion [Fig. 1(D)].
The same phenomenon can be reproduced in control islets
during GSIS, suggesting that the amino acid amplification
of insulin secretion is an important pathway during GSIS
[32]. This study suggests that the blockage of cAMP pro-
duction by the GLP-1 receptor antagonist inhibits AASIS
in KATP-HI, which may provide a novel therapeutic target
to treat KATP-HI. /n vivo experiments in SUR1-KO mice
strongly support the hypothesis that fasting hypoglycemia
in SUR1-KO mice can be corrected by prolonged subcuta-
neous infusions of Exendin-(9—39) [34]. A pilot clinical
study in KATP-HI patients confirmed the findings observed
in mouse models, namely that Exendin-(9—39) administra-
tion significantly increases fasting glucose levels in patients
[35]. Studies of islets isolated from surgical specimens
after pancreatectomy in KATP-HI patients have suggested
that human islets with loss-of-function mutations of the
KATP channel are indeed super-sensitive to AASIS
and that Exendin-(9—39) blocks such effects [35]. These
results suggest that amino acid-sensitive hypoglycemia or
AASIS plays an important role in severe hypoglycemia in
KATP-HI patients and that this effect can serve as a novel
target for drug development to treat KATP-HI. The precise
mechanism by which glutamine or amino acid exerts its
effects on the amplification pathways of insulin secretion
remains to be determined. However, it seems to be of great
importance clinically in children with KATP-HI disorders
and it may also be important as a major pathway for ampli-
fying the stimulation of insulin secretion in normal indivi-
duals in response to glucose and other metabolic fuels.

Chronic depolarization of beta-cells alters glucose
oxidation

The long-term treatment of type 2 diabetes with sulfonylur-
eas often leads to insulin secretion failure [36]. One study
in mice showed that beta-cell hyperactivity stimulated by
sulfonylureas results in ‘glucose blindness’ [37], similar to
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a lack of GSIS in islets from SURI-KO mice [32,38].
Based on these data, we postulate that the consequence of
chronic beta-cell depolarization and the elevation of cyto-
solic calcium affects glucose metabolism and results in
impaired GSIS. In order to test this hypothesis a metabolo-
mic approach was used to trace °C flux from
[U—13C]glucose to amino acid in islets isolated from
SURI-KO and wild-type mice. In the presence of 4 mM
physiological amino acid mixture, '*C enrichments of
amino acid in islets were detected in alanine, aspartate, glu-
tamate, +y-aminobutyric acid (GABA), and glutamine,
which indicates the incorporation of glucose carbon into
those amino acids. By serving as metabolic indicators,
those amino acids can thus be used to calculate carbon
fluxes from glucose. Since the expression of lactate de-
hydrogenase in beta-cells is very low [39,40] and monocar-
boxylate transporter 1 is absent in beta-cells [41,42],
changes in alanine may reflect changes in pyruvate, the
end product of glycolysis. This notion is supported by the
data that show that glucose indeed increases both the levels
of alanine and its '*C enrichment. Interestingly, the pattern
of the >C enrichment of alanine showed that M+2 is
about four times higher than M-+3, suggesting that the
M-+3 pool of alanine has been diluted by an active pyru-
vate cycling pathway [43,44]. This conclusion is supported
by the expression of the malic enzyme in mouse islets
[33,45,46], a key enzyme in the pyruvate cycling pathway.
Wild-type islets also have an active ‘aspartate switch’
pathway. Because glucose increases aspartate turnover by
decreasing aspartate levels and increasing its '*C enrich-
ment, this pathway reflects the increased flux in the citrate
acid cycle during glucose oxidation. Glucose oxidation also
increases glutamine biosynthesis via glutamine synthetase
using ATP and glutamate as substrates [33]. Importantly,
while mouse islets operate the GABA shunt pathway,
glucose lowers GABA levels and increases its '°C enrich-
ment, suggesting increased GABA shunt flux during
glucose oxidation. Compared with wild-type islets,
SUR1-KO islets show increased glutaminolysis, but have a
75% reduction in GABA shunt flux. The impaired GABA
shunt in SURI1-KO islets can be explained by down-
regulated glutamate decarboxylase gene expression, which
enzymes drive the reaction to generate GABA using glu-
tamate as a substrate [33]. Glyburide-treated wild-type islets
showed similar changes in the GABA shunt compared with
SUR1-KO. These alterations in the metabolism of
SURI-KO islets may lead to impaired glucose sensing but
increased amino acid sensing. As illustrated in Fig. 2, '*C
tracing helps us outline the integrated metabolic network
in pancreatic islets. Furthermore, amino acids serve as
metabolic indicators, thereby providing a powerful tool to
help us explore the detail of the metabolic pathway in
beta-cells.
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Figure 2 Integrated metabolic network of glucose and amino acid
metabolism  Pyruvate arising from glycolysis is in equilibrium with
alanine via alanine aminotransferase (ALT). Alanine is therefore a suitable
readout for pyruvate labeling. Pyruvate carbon enters the citric acid cycle
through pyruvate carboxylase (PC) or with pyruvate dehydrogenase
(PDH) via oxaloacetate (OAA) or acetyl-CoA, the building blocks of
citrate. Pyruvate is probably also in equilibrium with malate via malic
enzymes (MEs). Glucose carbon is channeled to glutamate and glutamine
via transamination followed by ATP-dependent amination, respectively.
Glutamate decarboxylase (GAD) is the entry point for glutamate into the
GABA shunt with succinate as end product. The GABA shunt is shown in
red, pyruvate cycling in purple and alanine—pyruvate transamination in
blue. GABA-T, GABA transaminase; SSA, succinate semialdehyde;
SSADH, SSA dehydrogenase; AST, aspartate aminotransferase; GDH,
glutamate dehydrogenase; PDH, phosphate-dependent glutaminase; GS,
glutamine synthetase.

Signaling Effects of Amino Acid beyond
Acute Insulin Secretion in HI

As we discuss here, the acute effects of amino acids on
beta-cell insulin secretion in these three forms of HI are
responsible for hypoglycemia after protein meal via differ-
ent mechanisms. However, the long-term effect of amino
acids in maintaining chronic hyper-functional beta-cells in
HI is unclear. Since amino acids, especially leucine, also
regulate the mammalian target of rapamycin (mTOR) and
AMP-activated protein kinase (AMPK) pathways [47—49],
we can speculate that the alteration of these pathways
by amino acids may be responsible for supporting hyper-
functional beta-cells in HI in the long-term, such as by
increasing insulin biosynthesis in order to maintain a high
secretion of insulin. Leucine alone or via the activation of
GDH may regulate protein synthesis, protein phosphoryl-
ation, and gene expression in beta-cells via the mTOR and
AMPK pathways, which leads to complicated and long-
term changes in cellular metabolism, function, and growth
[50]. Although the effects of leucine on the regulation of

202 11dy 60 U0 1s9NB Aq 8E L L/9€E/L/SH/AI0IME/SqQE/W0d dNo"dlWapEdE//:Sd)Y Wolj papeojumoq



Amino acid and insulin secretion in hyperinsulinism

the mTOR and AMPK pathways in beta-cells have been in-
tensively investigated [50,51], the role of these pathways in
the regulation of beta-cell function in HI remains largely
unknown. Studies of amino acid sensitivity in HI provide
insights into how amino acids regulate insulin secretion,
which may further our understanding of the complex fea-
tures of amino acids in the regulation of metabolism. For
instance, amino acid ingestion enhances insulin secretion in
type 2 diabetes patients [52].

Summary and Perspectives

The importance of AASIS is emphasized in three forms of
HI. Amino acid sensitivity in GDH-HI and SCHAD-HI
occur due to GDH gain of function by either GDH muta-
tion or a lack of inhibition by SCHAD via protein—protein
interactions. GDH gain of function leads to increased
amino acid oxidation and ATP production, which induces
insulin secretion via the triggering pathway. In contrast,
glucose oxidation increases intracellular phosphate poten-
tial, leading to beta-cell depolarization. Under this condi-
tion, amino acids, especially glutamine, serve as a signaling
molecule to amplify insulin secretion, similar to that in
SUR1-KO islets. Therefore, the sensitivity of AASIS may
reflect changes in the intracellular phosphate potential of
pancreatic islets. When intracellular phosphate potential is
low, islets become sensitive to leucine stimulation due to
the release of GDH inhibition. In contrast, glucose oxida-
tion increases phosphate potential, resulting in the inhib-
ition of GDH but the activation of glutamine synthesis and
leading to the amplification of GSIS. Understanding the
mechanisms of amino acid hypersensitivity in HI will help
us identify the metabolic pathways that are important for
insulin secretion in order to provide potential targets for
drug development to treat HI and eventually diabetes.
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