
Original Article

Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are

distinctive from susceptible rice

Jiao Wu1,2†, Haichuan Yu2†, Haofu Dai1, Wenli Mei1, Xin Huang3, Shuifang Zhu3*, and Ming Peng1*

1Institute of Tropic Bioscience and Biotechnology, Chinese Academy of Tropic Agricultural Sciences, Haikou 571101, China
2Xinxiang Medical University, Xinxiang 453002, China
3Institute of Animal and Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100029, China
†These authors contributed equally to this work.
*Correspondence address. Tel: þ86-898-66890981; Fax: þ86-898-66980978; E-mail: mmpeng_2000@yahoo.com (M.P.)/
Tel: þ86-10-64896608; Fax: þ86-10-64930934; E-mail: zhushf@netchina.com.cn (S.Z.)

The metabolic changes of bacterial blight-resistant line
C418/Xa23 generated by molecular marker-assisted selec-
tion (n 5 12), transgenic variety C418-Xa21 generated by
using the Agrobacterium-mediated system (n 5 12), and
progenitor cultivar C418 (n 5 12) were monitored using
gas chromatography/mass spectrometry. The validation,
discrimination, and establishment of correlative relation-
ships between metabolite signals were performed by
cluster analysis, principal component analysis, and partial
least squares-discriminant analysis. Significant and unin-
tended changes were observed in 154 components in
C418/Xa23 and 48 components in C418-Xa21 compared
with C418 (P < 0.05, Fold change > 2.0). The most signifi-
cant decreases detected (P < 0.001) in both C418/Xa23

and C418-Xa21 were in three amino acids: glycine, tyro-
sine, and alanine, and four identified metabolites: malic
acid, ferulic acid, succinic acid, and glycerol. Linoleic acid
was increased specifically in C418/Xa23 which was
derived from traditional breeding. This line, possessing a
distinctive metabolite profile as a positive control, shows
more differences vs. the parental than the transgenic line.
Only succinic acid that falls outside the boundaries of
natural variability between the two non-transgenic var-
ieties C418 and C418/Xa23 should be further investigated
with respect to safety or nutritional impact.
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Introduction

Bacterial blight (BB), which is caused by Xanthomonas
oryzae pv. oryzae (Xoo), is one of the most destructive

diseases in both inbred and hybrid rice throughout the
world [1]. More than 30 BB resistance genes or loci against
Xoo have been identified in rice so far [2]. However, it has
been difficult to use these genes to improve the resistance of
the parent for the purpose of hybrid improvement [3]. The
cloned and completely dominant gene Xa21 [4] is widely
used for resistance breeding, but its resistance only shows at
the later tillering stage [5]. Recently, the near-isogenic line
CBB23 with Xa23 on chromosome 11 was developed and
used in breeding programs [6]. Although it is not cloned,
the dominate Xa23 gene displays the broadest spectrum and
highest resistance to BB at all growth stages.

C418, an elite restorer line of hybrid rice, has a number
of hybrids widely used in rice production [7]. However,
C418 is susceptible to BB, introducing R genes into this
variety is a direct and convenient way [8]. To improve the
BB resistance of C418, the transgenic variety C418-Xa21
was produced through an Agrobacterium-mediated system
[9,10]. Introgression line C418/Xa23 was generated by
means of molecular marker-assisted selection (MAS) and
recurrent backcrossing [6,11,12]. Polymerase chain reac-
tion, Southern blot, and northern blot analyses demon-
strated that the foreign genes in the two genetically
modified varieties were inherited and expressed steadily
through generations. Field demonstration also indicated that
they had increased resistance to BB [9,12,13]. However,
there is concern that genetic engineering may introduce un-
foreseen traits into crops, which may cause undesirable
metabolites [14]. As the most important crop in the world,
the safety of genetically modified rice must be evaluated
strictly prior to large-scale production.

Metabolomics enables the parallel assessment of the
levels of a broad range of metabolites [15]. Metabolomic
technologies, which are typically based on nuclear magnet-
ic resonance analysis, gas chromatography/mass

Acta Biochim Biophys Sin 2012, 44: 650–659 | ª The Author 2012. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the

Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. DOI: 10.1093/abbs/gms043.

Advance Access Publication 11 June 2012

Acta Biochim Biophys Sin (2012) | Volume 44 | Issue 8 | Page 650

D
ow

nloaded from
 https://academ

ic.oup.com
/abbs/article/44/8/650/1086 by guest on 11 April 2024



spectrometry (GC/MS), liquid chromatography/mass spec-
trometry, and capillary electrophoresis/mass spectrometry,
have been successfully applied to various research fields,
including plant genotype discrimination based on the
multivariate analysis of complex biological profiles
[16,17]. GC/MS is of relatively low cost and provides high
separation efficiency to resolve complex biological mix-
tures [18]. The mass spectral and retention time index
(MSRI) library and other available libraries meet the
expressed demand within the metabolomics community
[19–21] and enable the use of GC/MS in more fields than
other analysis techniques [16,17,22–25]. Coupled with
pattern recognition, GC/MS is a good approach for metab-
olite profiling of plant genotypes [17,26].

Previous studies have focused on the comparative safety
assessment for biotech crops [27,28], but little attention has
been paid to new rice varieties generated by MAS techni-
ques. In this study, the comprehensive quantitative metabol-
ic profiles of C418/Xa23, C418-Xa21, and their genetic
background C418 were monitored using GC/MS. Cluster
analysis (CA) and principal component analysis (PCA) were
used to overview the distribution of all 36 brown rice
samples, classify the three rice genotypes, and find the dif-
ferences between complex samples. Furthermore, we
employed the supervised partial least squares-discrimination
analysis (PLS-DA) method to construct a visual model with
good predictive power. We evaluated the metabolomic differ-
ences between genetically modified (GM) variants and wild
cultivars using metabolite profiles based on an available
Q_MSRI library (GC/MS libraries: www.csbdb.mpimpgolm.
mpg.de/gmd.html), and then investigated whether it is pos-
sible to discriminate between the three rice genotypes using
metabolomic variations. In addition, key potential biomarkers
with the greatest influence on the discrimination between
sample classes were discovered.

Materials and Methods

Plant materials
The plant materials used in the study included three
japonia (Oryza sativa ssp. indica) cultivars: C418-Xa21, a
transgenic restorer line containing Xa21 [9]; C418/Xa23, a
new BB-resistant line containing Xa23 by molecular MAS
[12]; ‘C418’, the restorer line for many elite hybrids widely
grown in China [7]. These cultivars were obtained from the
Institute of Genetics and Developmental Biology, Chinese
Academy of Sciences (Table 1). Seeds were surface steri-
lized with 10% H2O2 (v/v) for 10 min, rinsed thoroughly
with distilled water, and germinated on moist filter paper
for 3 days in an incubator at 258C. After germination, the
seeds were then transferred to a net floating on 0.5 mM
CaCl2 in a plastic container. After 6 days, the seedlings

were transferred to a 10-L plastic pot in a growth chamber
at a 400-mM photons/m2.s and 288C/188C under a 14/10 h
light/dark regime. The nutrient solution for O. sativa was
half-strength Kimura B solution containing the macronutrients
including 0.18 mM (NH4)2SO4, 0.27 mM MgSO4

.7H2O,
0.09 mM KNO3, 0.18 mM Ca(NO3)2

.4H2O, and 0.09 mM
KH2PO4 and the micronutrients including 20 mM
NaEDTAFe.3H2O, 6.7 mM MnCl2.4H2O, 9.4 mM H3BO3,
0.015 mM (NH4)6Mo7O24

.4H2O, 0.15 mM ZnSO4
.7H2O,

and 0.16 mM CuSO4
.5H2O. The nutrient solution was pre-

pared with purified water, aerated daily, and renewed every
3 days. The pH of the solution was adjusted daily to 5.6
with diluted HCl and/or NaOH.

Seeds were harvested separately for each cultivar after
40 days, starting from the day on which the first panicle of
rice was observed. The seeds were dried at 308C for 3
days, threshed from the panicles manually, and then col-
lected. All seeds in the husks were stored at 48C under
dark conditions until analysis.

Chemicals
All chemicals were purchased from Sigma-Aldrich Chemie
GembH (Deisenhofen, Germany). The methoxyamination
reagent methoxyamine hydrochloride (Sigma, Munich,
Germany) was dissolved at 40 mg/ml in pure pyridine
(Merck, Darmstadt, Germany). The per-silylation reagent
was 1 ml vials of N-methyl-N-(trimethylsilyl) trifluoroace-
tamide (MSTFA; Macherey & Nagel, Düren, Germany).

Extraction and derivatization of the samples
Extraction of the plant samples was performed as previous-
ly described [8] with the exception that different volumes
of solvents were used according to the fresh weight of the
samples and different aliquots of the upper phase were
taken for derivatization. Briefly, 100 seeds were selected
for each cultivar according to average weight and length.
After separating the husks from the seeds, the brown rice
seeds were bulked and crushed using a Retsch mixer mill

Table 1 Sample information

Sample Description Methods of transformation

C418-Xa21 Japonica restorer

C418 transformed

with Xa21 gene

containing the

marker gene hpt

Agrobacterium-mediated

system

C418 Wild comparator

C418/Xa23 Japonica restorer

C418 transformed

with Xa23 gene

Polymerase chain

reaction-based MAS

system
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MM400 at a frequency of 25 Hz21 for 1 min at 48C. Then,
1 ml of extraction buffer [isopropanol/acetonitrile/water
(3 : 3 : 2, v:v:v), 2208C] was added to 100 mg of the
obtained powder. The samples were vortexed vigorously
for 10 s and then shaken for 15 min at 48C. After centrifu-
gation, a 150-ml aliquot of the supernatant was drawn and
transferred into a glass insert vial. The extracts were evapo-
rated to dryness in an SPD111 V-230 SpeedVac concentra-
tor from ThermoSavant (Thermo Electron Corporation,
Waltham, USA) at room temperature for 6 h.

Derivatization was performed as described previously
[8]. In summary, 2 ml of a C8-C40 n-alkanes mixture was
used to convert retention times to retention indexes.
Carbonyl groups were protected by 10 ml of a solution of
40 mg/ml methoxyamine in pyridine at 308C for 90 min.
Ninety microliters of MSTFA þ 1% Trimethylchlorosilane
was added for trimethylsilylation of acidic protons at 378C
for 30 min. All the derivatized samples were analyzed ran-
domly within 24 h.

GC-MS analysis and operating conditions
The reaction mixture was transferred to a 2-ml clear glass
autosampler vial with microinsert (Aglient, Santa Clara,
USA). Sample analysis was performed essentially as
described [29]. Briefly, samples (volume of 1 ml) were
injected with splitless using a hot-needle technique. The
GC-MS system consisted of a 7683B autosampler, a GC
7890A gas chromatograph and a 5975C quadrupole mass
spectrometer (Agilent, Atlanta, USA). Gas chromatography
was performed on a 30-m capillary column Rtx-5Sil MS
with a 0.25-mm inner diameter, integrated guard column,
and 0.25-mm film (Restek GmbH, Bad Homburg,
Germany). The injection temperature was 2308C. The
transfer line and ion source temperatures were 2508C and
2008C, respectively. The carrier gas was helium set at a
constant flow rate of 1.0 ml/min. The temperature program
starts isothermal for 5 min at 708C followed by a 58C/min
ramp to 3508C and a final 5-min heating at 3308C. Cooling
is performed as fast as instrument specifications allow. The
system was then temperature equilibrated for 1 min at 708C
prior to injection of the next sample. Mass spectra were
recorded at two scans per second with a 50–400-m/z scan-
ning range. The acceleration voltage was turned on after a
solvent delay of 9.5 min.

Mass spectral data processing
All mass spectral data were processed by Automated Mass
Spectrometry Deconvolution and Identification System
(AMDIS) software version 2.66 from National Institute of
Standards and Technology (NIST) (Gaithersburg, USA) and
exported in Elu and Fin format to Mass Profiler Professional
(MPP) software version 2.0 (Aglient Technologies, Palo
Alto, USA). Metabolites were unambiguously assigned by

the AMDIS, using retention index and mass spectrum as the
two most important identification criteria. Automatic peak
detection and mass spectrum deconvolution were performed
using a peak width set to 2.0 s. Peaks with signal-to-noise
(S/N) value lower than 10 were rejected. The S/N values
were based on the masses chosen by the software for quanti-
fication. Data, including baseline correction, peak deconvolu-
tion, and peak annotation for GC-quad-MS were processed.
All data pretreatment procedures, such as data normalization,
baseline correction, chromatogram alignment, and the subse-
quent data treatments, were performed using custom scripts
[30] for multivariate statistical analysis of metabolite pheno-
type clustering. To obtain accurate peak areas for the decon-
voluted components, the unique masses for each component
were specified and the samples were reprocessed. The
resolved MS spectra obtained from the custom scripts were
matched with reference mass spectra using the commercial
NIST 08 mass spectral library and the Q-MSRI library
in the Golm Metabolome Database (GMD) at CSB.DB
[31,32]. The extracted mass spectra were finally identified
or annotated according to their retention index and com-
parison with the reference mass spectra in the libraries.

Statistics
MPP software version 2.0 was used for retention time and
mass abundance adjustments. Multiple data sets were
aligned and normalized to correct data for retention time
and response drift before they were compared. The work-
flow followed these steps: (i) alignment of features across
all samples, (2) ‘per mass’ normalization to the median,
and (3) filtering. All independent biological replicate
samples per variety were analyzed as one variety after the
ion intensity for each molecular ion was averaged across
all biological replicates. The relative frequency of detection
was varied and compared. The highest quality features ana-
lyzed were those that were only present in all replicates, in
at least one or more groups. The features were then ana-
lyzed by volcano plots to reveal both fold changes and stat-
istical significance (P , 0.05).

Multivariate statistical analysis was performed by un-
supervised PCA, cluster analysis (CA), and supervised
PLS-DA with mean centering and scaling to visually dem-
onstrate the variance in the metabolic phenotypes based on
the discriminating features from the analysis of variance.
Hierarchical cluster analysis of metabolites was performed
to reveal association between replicate biological samples
within a group based on the similarity of their mass abun-
dance profiles. For univariate statistics, data were
Log(2)-transformed to reduce the weight of outliers and to
render the data sets more normally distributed. Two-tailed
Student’s t-tests were performed with significance thresh-
olds of P , 0.05 and , 0.001. Ratios were calculated from
antiloged class averages. PCA was carried out on unit
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variance scaled data in unsupervised mode for dimension
reduction purposes. The metabolic differences between the
transgenic rice and non-transgenic counterparts were visua-
lized three-dimensionally [33], and simple comparison of
peak area means was performed by t-test. A difference of
P , 0.05 was regarded to be significant. Daily quality con-
trols were used as Fiehn’s method [34].

Results

Physical characteristics of genetically modified and
non-transgenic rice seeds
Physical characteristics, such as the shape, uniformity and
translucence, of grains are crucial aspects of grain quality
[35,36]. The characteristics of C418/Xa23, C418-Xa21, and
C418 were compared in Fig. 1. The length, width, thick-
ness, and weight of a single grain of brown rice from each
rice genotype were measured. Among the three rice
samples, no marked difference in seed appearance was
observed. The weights of the two genetically modified rice
seeds were significantly decreased compared with C418.

The number of detected peaks increased linearly with
class frequency threshold reduction
Eight-fold replicate extraction tests were performed to de-
termine the technical precision of the method. For the iden-
tified metabolites, an overall median precision of 17%

relative standard deviation (RSD) was determined, validat-
ing that the extraction and analysis protocol was suitable
for GC-Quad-MS-based metabolite profiling [37]. The
technical reproducibility was determined as 10% RSD for
the 27 more abundant compounds and 23% RSD for the
80 less abundant metabolites. Thirty-six brown rice
samples of each rice genotype were pretreated and ana-
lyzed. There were 12 samples from C418, C418-Xa21, and
C418/Xa23. GC-Quad data were deconvoluted by AMDIS
and constrained by Q-MSRI GMDs. The number of
detected peaks increases proportionally to lowering the
threshold of positive detection for an entity in at least one
condition, e.g. present in 12 of 12 samples replicates rice
grain extracts per one or more classes (100% threshold) or
lower thresholds (50% and 75%) (Table 2). Generally, the
reduction in entities with higher threshold stringency
improves the confidence in subsequent statistical investiga-
tion by limiting the dimensionality and reducing the noise
in the data [8]. Therefore, we calculated the relationship
between the class frequency threshold (percent relative fre-
quency of entities detected across replicates in at least one
group) in liquid injection GC-Quad analyses and the
number of reported entities. The number of differential
peaks at .2-fold change is shown for various comparisons
with decreasing class frequency thresholds for peak detec-
tions. Parentheses indicate the number of compounds having
both greater than 2-fold change and P , 0.05 (Table 3). We

Figure 1 Comparative morphology, length, width, thickness, and weight of bacterial blight-resistant rice lines and non-transgenic rice single
grain. *P , 0.05, #P , 0.01.
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found that the number of entities roughly increased linearly
with decreasing class frequency threshold.

In total, 609 unfiltered entities were detected in GC-
EI-Quad ion mode. Upon filtering, the entities were reduced
to 467 (50% threshold) or 180 (100% threshold). GC-
Quad-MS data of structurally uncharacterized metabolites
can be classified into identified and structurally annotated
metabolites via retention index and mass spectral matching
to reference libraries. In a manner similar to the total number
of metabolic signals, the number of identified metabolites
linearly increased from 83 to 164 non-redundant metabolites
with decreasing relative frequency threshold levels. This
finding confirmed that setting the positive relative frequency
threshold at 50% was reasonable for comprehensive metabo-
lomics. The fact that only around one-third of all peaks were
structurally assigned is typical for unbiased metabolomics
screening, suggesting that functional annotation of plant
genes would greatly benefit from improved algorithms and
libraries used for compound identification [8].

Next, detailed pair-wise comparisons were performed
between the different groups that included fold change and
significance analysis based on unpaired t-tests. The results
were summarized in Table 3. The number of significant
metabolic differences (P , 0.05) between C418/Xa23 and
C418 was clearly more than those between C418-Xa2 and
C418. This observation was especially evident for those
significant differences that were .2-fold.

Genetically modified variants and their progenitor line
C418 differ in metabolic phenotypes
The representative total ion current chromatograms were
obtained from the total isopropanol/acetonitrile/water
extract of each rice genotype after silylation with MSTFA
[Fig. 2(A–C)]. High-level sucrose [Retention time (RT)
40.3 min] and raffinose (RT 48.7 min) were measured as a
common feature in all three rough rice genotypes.

As part of our exploratory phase, we performed cluster
analysis based on 3 K-means, 3 � 4 Self-Organizing Map
(SOM), and hierarchical grouping of the samples into clus-
ters based on similarity of their metabolite abundance pro-
files. Figure 2(D–F) present heat maps that contain all
detected metabolites in all samples by GC-Quad. The heat
maps reveal good clustering of sample replicates.
Interestingly, the samples from C418 were included in
C418-Xa21 by using HCA. The samples from C418 and
C418-Xa21 were clustered together, but not crossed by
3 � 4 SOM, indicating an analogical metabolite profile
between rice cultivar C418 and its Xa21 transgenic variant
different from C418/Xa23.

As shown in the PCA score plot [Fig. 3(A)], the distri-
bution of the samples in the score plot with the first two
principal components accounted for 87%. Each point repre-
sents a particular sample. Rice samples of the C418/Xa23
variety were both discriminated mainly along principal
component 1 (60.2% of explained total variance of all vari-
ables) from the C418-Xa21 and C418, indicating a distinct-
ive metabolite profile. Thus, PCA analysis poorly
distinguished C418-Xa21 from C418.

After the distribution of samples in the variable space by
HCA and PCA was overviewed, the supervised partial least
squares-discriminant analysis (PLS-DA) method was used
to establish a visual model for the discrimination of GM
varieties and wild-type controls [Fig. 3(B)]. Direct visual-
ization of the significance and magnitude of effects in the
rice grain comparison was provided by t-score plots of
PLS-DA and volcano plots for each pair-wise variety. As
shown in Fig. 4(A–C), autoscaling not only centered the
data set but also made the standard variation variable have
the same units [18]. The red points in the volcano plots,
based on the differential abundance between pair-wise con-
ditions using fold change and P values for visualization
[Fig. 4(A)], represent 48 significant differences between
the rice grains of C418-Xa21 and C418 [Fold change
(FC) . 2.0 and P , 0.05]. A total of 154 components

Table 2 Application of different stringency filters to the processing of
raw spectrometry data files significantly affects interpretation of
global metabolite profiling analyses

Class frequency

threshold (%)

GC-Quad

total

GC-Quad

unknowns

GC-Quad

identified

50 467 303 107

75 334 209 95

100 180 97 62

GC-Quad data were deconvoluted by AMDIS and constrained by

Q-MSRI Golm metabolome databases. The number of detected peaks

increases proportionally to lowering the threshold of positive detection for

an entity in at least one condition, e.g. present in 12 of 12 samples

replicates rice grain extracts per one or more classes (100% threshold) or

lower thresholds (50% and 75%).

Table 3 Univariate analysis of variance statistics for C418-Xa21 and
C418/Xa23 compared with C418

Class frequency

threshold (%)

C418-Xa21 versus

C418

C418/Xa23 versus

C418

GC/Quad 100 137 (16) 179 (66)

GC/Quad 75 260 (29) 307 (119)

GC/Quad 50 397 (64) 442 (163)

The number of differential peaks with .2-fold change is shown for

various comparisons with decreasing class frequency thresholds for peak

detections. Parentheses indicate the number of compounds having both

.2-fold change and P , 0.05.
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varied between C418/Xa23 and C418 [Fig. 4(B); FC . 2.0
and P , 0.05], and 112 varied between C418/Xa23 and
C418-Xa21 [Fig. 4(C)]. Furthermore, a total of 77 compo-
nents varied between C418/Xa23 and C418 (FC . 2.0 and

P , 0.001), and 13 varied between C418-Xa21 and C418.
Alanine, glycerol, glycine, malic acid, succinic acid, ferulic
acid, and tyrosine were all present at significantly lower
levels (P , 0.001) in C418/Xa23, whereas linoleic acid

Figure 2 Cluster analysis of GC-MS revealed a more distinct profile of the new rice variety C418/Xa23 compared with rice cultivar C418 and its
transgenic variety C418-Xa21 (A–C) Typical GC/MS total ion current chromatograms for the total isopropanol/acetonitrile/water extract of the three

rice genotype samples C418-Xa21(A), C418 (B), and C418/Xa23 (C) after silylation with MSTFA. (D–F) Cluster analysis of GC-EI-Quad data for 12

biological replicates for the three rice genotypes based on 3 K-means, 3 � 4 SOM, and hierarchical. The mass trees (dendrogram) reveal the relationships

between the different conditions based on their abundance levels with each rectangle or cell representing an accurate mass and colored by its abundance

intensities on a normalized scale from 214.8 (low) to 14.8 (high). Masses with similar abundance patterns are placed closer to each other. The mass tree

branches at the top of the figure are colored by each condition, and show the correlations for the main clades or branches.
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was present at considerably higher levels (P , 0.001) than
in C418 (Fig. 5). Although most significant differences are
still inside between C418 and C418/Xa23, succinic acid
that falls outside the boundaries of natural variability
between the two non-transgenic varieties should be further
investigated with respect to safety or nutritional impact.

Discussion

We also noticed that linoleic acid increased to 29% and
25% in transgenic rice O. sativa L. ssp. indica with resist-
ance to rice blast and O. sativa L. Kefeng No. 6 with
insect resistance, respectively, compared with their non-
transgenic counterparts, which means that the transgenic
effect was positive on the fatty acid compositions [27].
Interestingly, we observed that plant height and leaf length
of C418/Xa23 were significantly larger than C418 and its
transgenic variant C418-Xa21 throughout the vegetative

stage. In the absence of ammonium salt as a nitrogen
source, only C418/Xa23 grew normally (data not shown).
Simultaneously, up-regulation of linoleic acid only
occurred in C418/Xa23, which might result in promoting
the vegetative stage through the activation of phosphoenol-
pyruvate carboxylase (PEPC) [38], which is consistent with
recent results that the genus oryza has a unique mechanism
for providing organic acids for ammonium assimilation that
involves a chloroplastic PEPC, and that this route is crucial
for growth with ammonium [39].

In addition, Sana et al. [8] have shown that there is
inherent difference in leaf metabolism and that central
carbon catabolism is reduced in correlation with gene and
metabolite expression in both Xa21 and TP309 rice geno-
types. This was interpreted as a pleiotropic effect of
primary genetic alteration but not found in pathways
involved in resistance to bacterial infection. Zhou et al.
[28] reported that sucrose, mannitol, and glutamic acid

Figure 3 PCA and PLS-DA of GC-MS data showed inherent brown
rice metabolism difference among the three genotypes (A) 2D-PCA

scores plot represent the discrimination among two GM variants,

C418-Xa21 and C418/Xa23, and their counterpart. 2D-PCA score plots

consisting of the PC1 and PC2 are shown. (B) PLS-DA scores plot

display the diversity among C418-Xa21, C418/Xa23, and their

counterpart. The squares (red), triangles (blue), and circles (brown)

indicate C418-Xa21 (n ¼ 12), C418/Xa23 (n ¼ 12), and C418 (n ¼ 12),

respectively.

Figure 4 PLS-DA score plots (left) and volcano plots (right) of
metabolomic comparison (A) C418-Xa21 versus C418, (B) C418/

Xa23 versus C418, and (C) C418/Xa23 versus C418-Xa21. Significant

difference with P , 0.05 and .2-fold intensity ratios (50% threshold) are

shown as red rectangle (gray rectangle means no significant difference).

The squares (red), triangles (blue), and circles (brown) indicate

C418-Xa21 (n ¼ 12), C418/Xa23 (n ¼ 12), and C418 (n ¼ 12),

respectively.
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were widely affected by insertion of the cryIAc and sck
genes. Jiao et al. [27] showed that glycine decreased 23%–
74% in three transgenic rice seeds compared with their
counterparts and surmised that the nutritional value of
transgenic rice was decreased. In this study, amino acids
(glycine, alanine, and tyrosine), organic acids (succinic
acid, malic acid, and ferulic acid), and glycerol were the
common, novel discriminatory metabolites decreased in
two genetically modified rice grains (Fig. 5). The reason
for unintended compositional alterations and unintended
changes of physical characteristic in GM rice compared
with the progenitor line might be related to the genetic
transformation and introduced foreign gene or its product,
which may interfere with the metabolic pathway by inter-
acting with enzymes and bringing about an accumulation
or disappearance of metabolites in the host cells [27].
Recently, Chen et al. [40] identified a new class of sugar
transporters SWEETs and discovered that the rice homolo-
gues SWEET11 and SWEET14 are specifically exploited
by bacterial pathogens for virulence by means of mediating
glucose transport. The mutagenesis in a unique fbaB
(fructose-bisphophate aldolase) gene of Xanthomonas.
oryzae pv. oryzicola led the pathogen unable to use pyru-
vate and malate and reduced extracellular polysaccharide
production, i.e. carbohydrates play critical roles in rice
pathogen X. oryzae pv. oryzicola [41]. Furthermore, in our
study, the common difference in physical characteristics
and metabolic profile variation of both BB resistant rice
seeds may be induced by the defense response owing to
foreign gene expression. Although our analyses enable dif-
ferentiation of metabolites of two BB resistant rice genotypes
and their susceptible counterpart, the coherent interpretation

of metabolite profiles and BB defense phenotypes needs to
be elucidated by additional studies because of the techno-
logical limitations.

The food safety of GM crop plants is a controversial
topic worldwide. Unbiased, discovery-based metabolomics
analyses yield novel insights into the response to diverse
and foreign gene manipulation. Defining the composition
of biotech products is a key step in safety assessment, espe-
cially in the context of substantial equivalence and com-
parative risk assessment [42]. Brown rice metabolome
analysis using GC/MS confirmed that the levels of various
metabolites were altered in GM variants compared with
their parental counterpart. Our results indicated that the
C418/Xa23 variety possessed a distinct metabolite finger-
print compared with C418-Xa21 and C418, i.e. the trans-
genic variant C418-Xa21 in this study appear substantially
equivalent to traditional cultivar C418 apart from the same
targeted changes in two resistant rice varieties.

Molecular MAS has increasingly become an important
measure to modify and select rice varieties. In fact, large
variation in the metabolite profiles among conventional
cultivars has been found, and those differences were never
sought as desired traits in traditional breeding programs
[43]. Since new hybrid rice varieties generated by MAS or
conventional breeding techniques, for example C418/Xa23,
have to be positive control when the risk of transgenic rice
C418-Xa21 is assessed before popularizing in subsequent
studies. We suggest that only significant differences that
fall outside the boundaries of natural variability among a
range of equivalent cultivars and not solely the parental
line should need further investigation with respect to safety
or nutritional impact.

Figure 5 One-way analysis of variance of Log 2 (GC-Quad data) of metabolic differences in two bacterial blight-resistant rice variants
compared with their counterpart C418 plant Error bars represent one standard deviation. *P , 0.05; #P , 0.001. n ¼ 12 for each rice genotype.
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