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Presently, worldwide attempts are being made to apply
stem cells and stem cell-derived products to a wide range
of clinical applications and for the development of cell-
based therapies. In order to harness stem cells and
manipulate them for therapeutic application, it is very im-
portant to understand the basic biology of stem cells and
identify the factors that govern the dynamics of these cells
in the body. Several signaling pathways have emerged as
key regulators of stem cells. Some of these signaling path-
ways regulate the stem cell’s proliferative capacity and
therefore act as direct regulators of the stem cell, whereas
others are involved in shaping and maintaining the stem
cell niche and therefore act as indirect regulators of the
stem cell. It is difficult to identify which signaling path-
ways critically affect the stem cell’s behavior and which
are important for maintaining the quiescent population.
A stem cell receives different extrinsic signals compared
with the bulk population and responds to them differently.
In order to manipulate these adult cells for therapeutic
approaches it is crucial to identify how signaling pathways
regulate stem cells either directly by regulating prolifera-
tive status or indirectly by influencing the niche. The
main challenge is to identify whether different factors
provide diverse extrinsic signals to the stem cell and its
daughter cell population, or whether there are intrinsic
differences in stem cell and daughter cell populations that
is reflected in their behavior. In this study, we will focus
on the various aspects of stem cell biology and differenti-
ation, as well as exploring the potential strategies to inter-
vene the differentiation process in order to obtain the
desired yield of cells applicable in regenerative medicine.
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Introduction

The earliest event in embryonic development is the specifi-
cation of three germ layers, i.e. ectoderm, mesoderm, and

endoderm. This process requires the sequential activation
of a large number of gene products in the stem cell.
However, the exact switch by which a stem cell gets
committed to a particular lineage is still a mystery [1].
Self-renewal capacity and pluripotency are the characteris-
tic features of the stem cell, which open new avenues for
their application in cell-based therapeutic strategies and
tissue engineering. Self-renewal enables the extensive
ex vivo (and in vivo) expansion of progenitor cells for a tar-
geted tissue. This is a key feature for generating sufficient
cells to meet the potential demand for tissue replacement.
Pluripotency, or ability of the stem cell to differentiate into
multiple cell types, allows for the possibility of generating
tissues of multiple lineages from a single cell source.
Initially, it is thought that in adult tissue systems progenitor
cells of a particular tissue never cross their boundaries to
differentiate into tissue cells of other type [2]. Recent
studies on heterokaryon demonstrated that the differentiated
state can be changed in the presence of appropriate regula-
tory molecules and under some selective conditions; these
cells could be made to differentiate into a broad spectrum
of cells [3]. This phenomenon of trans-differentiation
described the conversion of cell to a cell of different type
acquiring new cell fate, genetic repertoire and functions
similar to the trans-differentiated cell type [4]. The concept
that the identity of a somatic cell can be changed became a
reality as lineage reprogramming was established. In 2006,
Yamanaka and Takahashi [5] discovered how to ‘repro-
gram’ adult cells with specialized function (e.g. skin cells)
in the laboratory, so that they behave like an embryonic
stem cell. These cells called induced pluripotent cells or
iPS cells were created by inducing the differentiated cells
to express genes that are normally made in embryonic stem
cells and that control the cell functions [5]. A major goal in
cell biology is to maintain an intricate balance between
stem cell renewal and the differentiated counterpart. The
multi-lineage differentiation potential of stem cells is not
only beneficial but is also a challenge as differentiation at
the wrong time, place, or to an undesired cell type may
lead to a harmful pathophysiological condition. To avoid
such maladaptive responses, stem cells have evolved
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elaborate circuitry that triggers them to respond to differen-
tiation cues only in an appropriate biological context.
Various soluble factors (e.g. growth factors and cytokines)
have been identified to play important roles in regulating
stem cell differentiation [2]. Recent evidence demonstrated
that the response to these stimuli is strongly modified by
adhesive and mechanical cues, and that these micro-
environmental factors may be used explicitly to control
stem cell differentiation in their own right [6]. Despite
rapid advances in the field of stem cell biology, the precise
and the efficient differentiation into distinct cell types and
tissues is still a major challenge. One of the major barriers
to the successful stem cell therapy is to make the cells to
behave in the desired way [7]. Our understanding of how
stem cells are regulated to maintain their quiescent state or
induced to differentiate is not fully elucidated. A number
of transcription factors and signaling pathways have been
identified that affect the differentiation process [8], much
more still need to be identified. Thus a complete knowl-
edge of regulatory mechanisms is mandatory to unwind the
complex web of switches that push a naive stem cell into a
more specialized state.

Biology of Stem Cells

‘Stem cells’ is a term to describe precursor cells that can
form multiple tissue types of an organism or can give rise
to all the three germ layers of an organism. Stem cells are
undifferentiated, highly specialized kinds of cell types
having the ability to renew itself, found in different tissue
or organ. Stem cells are capable of dividing for long period
of time and furnish different cell types with specific
functions [9].

Stem cells are classified into two categories on the basis
of their origin and their functional properties. One is the
embryonic stem cell (ESC), whereas the other is the adult
stem cells. ESCs are often confused with embryonic germ
(EG) cells. The cells derived from the various sources
differ in the ability to transform into cells of various
lineages, and on this basis they can be classified into five
different types which are described in Table 1.

‘Human ESCs (hESCs)’ are formed in the blastocyst
phase of development; i.e. a 4- or 5-day-old human
embryo that consists of an inner cell mass called embryo-
blast and an outer cell mass called trophoblast. The outer
cell mass becomes part of the placenta, and the inner cell
mass is the source of embryonic stem cells. These cells are
totipotent cells having the potential to develop into any
cell type in the body including the embryonic and extraem-
bryonic structures [10].

‘Human EG cells’ are derived from primordial germ line
cells in early fetal tissue. EG cells are capable of forming
the three germ layers that make all the specific organs of

the body, but their range of potential fates is relatively
limited as compared with ESCs [11].

‘Human adult stem cells’ are found in developed tissue,
regardless of the age of the organism [12]. The most well-
known example of this is the hematopoietic stem cells
(HSCs) of blood and mesenchymal stem cells (MSC)
required for the maintenance of bone [13], cartilage, and
other tissues [12]. Adult stem cells are multipotent; their
potency is poor as compared with that of the embryonic
stem cells and EG cells [14]. However, these cells offer ex-
cellent potential for use of stem cells in clinics [12].

Self-regeneration is a critical feature of stem cells,
because these cells are constantly subjected to physiolo-
gical stresses that stimulate them toward the differentiation
pathways resulting in their depletion [15]. For example,
HSCs are needed under conditions of hypoxia to increase
red blood cell numbers, or during infections to amplify
granulocytes and macrophages [16]. Self-renewal ensures
that sufficient numbers of stem cells are available to meet
demands of the organism. Upon division, a stem cell gives
rise to another stem cell which maintains the quiscent pool
population and a daughter cell which finally gives rise to
terminally differentiated cells [2]. The stem cells need ap-
propriate inductive conditions in order to differentiate into
specific cell lineages [17]. In this context, the stem cell in-
timately depends on its surrounding environment for main-
taining its properties [18].

Table 1 Classification of stem cells derived from various sources
based on their differentiation potential

Type of

stem cells

Developmental potency Examples

Totipotent Ability to differentiate

into all cell types and a

functional organism

Zygote and the first

few cells that result

from the division of

the zygote

Pluripotent Ability to differentiate

into almost all cell

types but cannot form a

functional organism

ESCs

Multipotent Ability to differentiate

into a closely realted

family of cells

Hematopoietic (adult)

stem cells, MSCs,

dental pulp stem

cells, etc.

Oligopotent Ability to differentiate

into a few cell types

Lymphoid (adult) or

myeloid stem cells

Unipotent Ability to only produce

cells of their own type,

but have the property of

self-renewal required to

be labeled a stem cell

Muscle (adult) stem

cells

Modes of stem cell differentiation
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Both intrinsic and extrinsic mechanisms cooperate strin-
gently to maintain the balance between stem cell quies-
cence and proliferation [19]. The stem cells divide
asymmetrically into a new stem cell (self-renewal, reserved)
and a committed progenitor (differentiation, active) [20]. In
the niche environment, active stem cells are the ‘primed’
sub-population that account for the generation of corre-
sponding tissues, whereas quiescent stem cells function as
a ‘back-up’ or ‘reserved’ sub-population and replace the
damaged cells [21]. A complex loop of genetic determi-
nants and signaling factors are involved in maintaining the
delicate balance between MSC self-renewal and differenti-
ation. MSCs from a variety of mammalian species express
the embryonic stem cell gene markers including Oct-4 [22],
c-Myc [23], Sox2 [24], rex-1 [25] others like nanog [26],
klf4 [27], etc. A critical amount of Oct-3/4 is required to
sustain stem cell self-renewal, and up- or down-regulation
induces divergent developmental specificities [22]. A less
than 2 fold increase in expression causes differentiation into
primitive endoderm and mesoderm, whereas repression of
Oct-3/4 induces loss of pluripotency and dedifferentiation to
trophectoderm. c-Myc, in addition to being essential for pro-
liferation of lineage-committed hematopoietic cell in vivo,
plays an unexpected role in controlling the balance between
HSC self-renewal and differentiation. A loss of c-Myc func-
tion leads to up-regulation of adhesion molecules which in
turn, results in failure of differentiation, presumably by reten-
tion of HSCs in the bone marrow niche. Therefore increased
c-Myc induces HSC differentiations [23].

Leukemia inhibitory factor (LIF) [28], fibroblast growth
factors (FGFs) [29], and mammalian homologues of
Drosophila wingless (Wnts) [30] are among some of the
growth factors and cytokines, that have been observed to
play a role in the maintenance of the balance between the
‘stemness’ and differentiation of MSCs. LIF, a pleiotropic
cytokine 9, maintains the stem state [11]. In vitro studies
have indicated that, higher concentrations of LIF stimulate
self-renewal [31]. In the absence of LIF, ESC differenti-
ation occurs at a similar rate in a chemically defined
medium as it does in serum containing medium. FGF2
maintains the stemness by increasing viability in a
cell-autonomous fashion [13]. Wnts may also regulate the
MSC maintenance, as they are involved in the self-renewal
of hematopoietic [32], neural [33], intestinal [34], and skin
stem cells [14]. Wnt3a treatment increases adult MSC pro-
liferation while inhibiting their osteogenic specification.
The combination of these reciprocal backup systems pro-
vides a robust mechanism to ensure a high rate of physio-
logical self-renewal as well as flexible damage repair.

Stem cells in health and disease
Both embryonic and adult stem cells are potential resource
for investigating early developmental processes as well as

assessing the therapeutic potential of these cells in numer-
ous diseases models [35]. The most widespread application
of human bone marrow stem cells is the replacement
therapies—to replace diseased or degenerating tissues, or
to replace cell populations, such as those of the hemato-
poietic system. Understanding the entire paradigm that
regulates their self-renewal and differentiation can lead to
new stem cell therapies for developmental defects and
disease. In theory, bone marrow stem cells could provide
an unlimited supply of specific cell types for transplant-
ation and can be used as an impending cell source for
generation of artificial functional tissue [36]. HSC-derived
cardiomyocytes, neural precursors, and hematopoietic pre-
cursors have been transplanted into recipient animals.
Although the analyses of the long-term outcome of such
experiments are limited, the initial findings suggest that the
transplanted cells were able to function normally in the
host animal [37]. Allogenic bone marrow transplantation in
osteogenesis imperfecta patients resulted in 1.5–2.0% en-
graftment of donor osteoblasts, thus demonstrating a poten-
tial therapeutic role of these cells [38]. These studies are
paving the way for further applications of stromal cell
system in the field of transplantation with respect to hem-
atopoietic support, immuneregulation, and graft facilitation
[39]. Stem cell therapy has been found useful to repair
damaged spinal cords [40]; cure Crohn’s [41], Alzheimer’s
and Parkinson’s disease [42]; re-grow arteries around a
blockage [43]; re-grow limbs [44]; replace failed kidneys
[45], and hearts [46]; cure diabetes by replacing non-
functional cells in the pancreas [47]; restore vision [48],
and hearing [49]; treat leukemia and lymphoma that are
non-responsive to normal therapy [50]; and treat brain
cancer [51]. All these potential applications exploit the
ability of selective differentiation of stem cells under pre-
defined culture condition. Human hiPS cell-derived cardio-
myocytes can also be valuable as a test system for evaluat-
ing the toxicity and efficacy of new medicines or chemicals
[52]. The wide varieties of cell type and tissue that may
develop from stem cells represent a biological system that
mimics many of the complex interactions of the cells and
tissues of the body, and hence provides an attractive and
valuable screening tool [53]. This type of assay could have
wide applications in the pharmaceutical, chemical, cos-
metics, and agrochemical industries [53], providing new
insights in the area of tissue engineering.

Harnessing the differentiation potential of stem cells
There are at least three essential requirements for practical
use of stem cells in regenerative medicine: (i) the directed
differentiation of stem cell to specific cell types,
(ii) achieving high survival of the cells after transplant-
ation, and (iii) prevention of undifferentiated stem cells that
are prone to form teratomas or cancers [54]. A number of
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signal modulators including growth factor- and cytokine-
driven pathways can govern the stemness and differenti-
ation of stem cells. A number of studies have shown that
stem cells (MSCs, HSCs ,or ESCs) can be induced to dif-
ferentiate by any alteration in the niche environment by any
changing the extrinsic or intrinsic factor [55]. Traditionally,
ESCs can be made to differentiate via three fundamental
methods, which include the formation of embryoid bodies
(EBs) [56], culturing directly on stromal cells following by
the differentiation [57] and differentiating ESCs in a mono-
layer on extracellular matrix proteins [58]. However, each
method has its own advantages and complications. EBs can
generate a three-dimensional structure which can further
enhance cell–cell interaction, modulate certain develop-
mental programs, whereas the same complexity might
lead to the generation of certain cytokines to interfere
with the signaling pathways [56]. Co-culturing of ESCs
with osteopetrotic 9 (OP9) stromal cells provides the ad-
vantage of growth factors of OP9 stromal cells, but these
same factors may lead to the differentiation of stem cells
to undesired cell type [56]. Differentiation in monolayers
on known substrates is one of the simplest protocols, but
with this protocol the matrix proteins are critical. The dif-
ferent proteins can have a dramatic effect on the develop-
ing ESC [56]. The molecular mechanisms regulating stem
cell differentiation is slowly being unraveled.

Chemicals and growth factors during differentiation
A number of growth factors/cytokines/transcription factors
and synthetic chemicals (collectively called inducing
agents) that have been reported to induce or regulate the
differentiation of stem cells are shown in Table 2.

Apart from the differentiation factors mentioned above
in Table 2, a plethora of molecules also are identified
to have a role in modulating stem cell fate. These mole-
cules offer a wider repertoire of choice for selective
differentiation of stem cells which may be exploited for
future application in therapy. IQ-1 (calmodulin binding
motif ) is a newly discovered molecule which prevents
the differentiation of the stem cells and maintains the
cell in quiescent state till required. Wnt pathway is
known to have dichotomous effects on stem cells, i.e.
both proliferative and differentiative [99]. This molecule
can block one arm of Wnt-signaling pathway, while
enhance the signal coming from the other arm of the
Wnt pathway [100]. Other transcription factors like core-
binding factor subunit alpha-1/runt-related transcription
factor 2 (CBFA-1/RUNX2) and Osterix (Osx) are
required for bone formation [101], while Sox9 is required
for chondrogenesis [102]. There exists a reciprocal regula-
tion between Sox9 and RUNX2, which may have some
effect on MSC fate [103]. In human MSCs, N-formyl-
methionine-leucine-phenylalanine promotes osteoblast

Table 2 Induction agents that regulate cellular differentiation

Induction agents Expected cell fates References

Basic fibroblast growth factor (BFGF), BMP-4, EGF, and RA Ectodermal and mesodermal [59–63]

TGF-b1, activin-A Mesodermal [61,64]

Hepatic growth factor, b neural growth factor Ectoderm, mesoderm, and endoderm [62,65]

Interleukin-3 (IL-3) Macrophages, mast cells, or neutrophils [66]

IL-6 Erythroid [67]

RA, B-27 supplement, BFGF, and nerve growth factor Neurogenic [59,63,68,65]

myoD, myf6, TGF-b1, and FGF-8 Myogenic [59,64,69]

Peroxisome proliferator-activated receptor-g2, adipocyte protein 2 (ap2),

iso-butyl-methyl-xanthine, and indomethacin

Adipogenic [13,70,71]

Sox9, FGF-2, BMP-6, TGF-b1, and TGF-b3 Chondrogenic [72–75]

TGF-b, FGF, PDGF, insulin-like growth factor, IL-1, CBFA-1, RUNX-2,

transcriptional coactivator with PDZ-binding motif (TAZ), MSX2, Dlx-5, AP-1,

osteopontin, dexamethasone, b-glycerol-phosphate, and ascorbate

Osteogenic [12,76–82]

Vascular endothelial growth factor receptor-2, Von Willebrand factor, and

vascular endothelial cadherin

Endothelial [83–85]

TGF-b1 family, IGF-1, PDGF, FGF, oxytocin, erythropoietin, 5 azacytidine,

ascorbic acid, RA, DMSO, and dynorphin-B

Cardiomyocyte [86–96]

Hepatocyte growth factor (HGF), oncostatin M, dexamethasone, and

insulin-transferrin selenium-X

Hepatogenic [62,97,98]
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differentiation via the N-formyl peptide receptor 1-mediated
signaling pathway [104].

Various chemicals have been demonstrated to modulate
stem cell fate, e.g. rosiglitazone (promotes adipocytic
differentiation of MSCs) [105], fluoxetine (stimulate
hippocampal neurogenesis) [106], myoseverin (revert
terminally differentiated myotubes into myoblasts), etc. [107].
Chemicals like KHS101, phosphoserine, chlamydocin, repsox,
5-azacytidine, Bix0129, valporic acid, etc. can switch stem
cell lineage to a dramatic extent via up- or down-regulation of
one or more signaling pathways [108]. Some other molecules
including CHIR99021 (the activator of canonical Wnt signal-
ing) [108], dorsomorphin (the inhibitor of bone morphogenetic
protein, BMP, signaling), PD0325901 (the inhibitor of extra-
cellular signal-regulated kinase, MEK, signaling) [109],
Cyclopamine (the inhibitor of hedgehog, Hh, signaling) [110],
XAV939 (the inhibitor of Wnt signaling) [111], and the activa-
tor like Hh-Ag1.2/1.3 [108], also play a role in directing the
stem cell to a particular lineage.

Mechanical cues for differentiation
Apart from chemicals or growth factors, mechanical means
also can differentiate the stem cell. Mechanical factors can
also be used to control the fate of stem cell and direct the
differentiation to desired cell type. The mechanical aspects
have been largely ignored by stem cell biologists till date.
Studies have shown that the physical properties of extra-
cellular matrix can control stem cell fate toward osteogen-
esis or chondrogenesis, which depends on its mechanical
strength [112]. Recently, it was reported that manipulating
the membrane potential of cultured MSCs can influence
their fate and differentiation [113]. Researchers from the
University of Chicago found that the shape of the matrix
can dictate the fate of stem cell [114]. They observed that
on a flower shape matrix majority of cells turned into fat,
and on a star shape they turned into bone. Since the star
shape promotes a tense cytoskeleton in cells, which pro-
vides structural support for cells, whereas flower shape pro-
motes a looser cytoskeleton [114]. These authors have also
built a novel type of stem cell scaffold, which resembles an
ultrafine carpet of ‘microposts’, hair-like projections made
of the elastic polymer polydimethylsiloxane. It was pos-
sible to manipulate the rigidity of matrix by adjusting the
height of the microposts [114]. Thus a number of diverse
mechanisms operate together to regulate the final fate of
stem cell. However, although the cell differentiation is the
result of a complex orchestration of many signals from mul-
tiple signaling pathways, a single chemical/physical factor
can alter the relative balance of these signals and direct the
differentiation.

The complex crosstalk of signals in the ultimate
decision of cell fate
The signaling environment is a part of natural mechanism
regulating stem cell fate. Stem cell differentiation needs to
be explored in the context of various interacting pathways
which encompasses more than just stem cell fate control.

Wnt proteins represent a growing family of secreted sig-
naling molecules that influence multiple developmental
processes in both vertebrates and invertebrates. The found-
ing member of this family, Int-1 (now called Wnt1), was
identified as a proto-oncogene [115]. Wnts act by binding
to two types of receptor molecules at the cell surface. One
is the Frizzled family which is a seven-pass transmembrane
protein family, containing a cysteine-rich extracellular
domain that binds to Wnt proteins [116]. The second is a
subset of the low-density lipoprotein receptor-related
protein family [117], a single-pass transmembrane protein.
Binding of Wnt proteins to their receptors leads to the sta-
bilization and accumulation of b-catenin in the cytosol by
inhibiting its phosphorylation by glycogen synthase kinase 3
beta (GSK-3b) [118]. b-Catenin then migrates to the
nucleus, binding to members of the lymphoid enhancer-
binding factor 1 (LEF)/T-cell factor (TCF) family of tran-
scription factors which [119] represses gene transcription.
Binding of b-catenin relieves this repression and allows
LEF/TCF factors to induce the expression of appropriate
target genes [120]. Wnt signaling pathway contributes to the
regulation of stem cell self-renewal in the hematopoietic
system. For example, Wnt5A results in increased progenitors
in fetal liver and bone marrow-enriched [121] precursors.

BMPs belong to the transforming growth factor-b
(TGF-b) superfamily. They are involved in the regulation
of cell differentiation, proliferation, apoptosis, and develop-
ment [122]. There are more than 20 BMPs which play im-
portant roles in regulation of stem cell properties; however,
their functions are different in the different stem cell com-
partments. For example, in ESCs, BMP signaling is
required for ESC self-renewal, but this is owing to its
ability to block neural differentiation [123]. In addition to
its ability to promote non-neural (mesoderm and tropho-
blast) differentiation [123] in MSCs, the BMP signal
induces osteoblastic differentiation through the isoform
Bmpr1b, but inhibits the differentiation through another
isoform, Bmpr1a [124]. In intestinal stem cells, BMP sig-
naling inhibits stem cell activation and expansion [125]. In
HSCs, BMP signaling controls the niche size through
Bmpr1a and restricts the stem cell number [124]. BMP
functions through receptor-mediated intracellular signaling.
There are two signaling pathways involved in BMP signal
transduction [126]. The canonical BMP pathway is through
receptor I mediated phosphorylation of Smad1, Smad5, or
Smad8 (R-Smad). Two phosphorylated R-Smads form a
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heterotrimeric complex with a common Smad4 (co-Smad).
The Smad heterotrimeric complex translocates into the
nucleus and cooperates with other transcription factors to
modulate target gene expression [126].

Another class of signaling molecules having important
role in development is the receptor tyrosine kinases
(RTKs). Some tyrosine kinases play crucial roles in self-
renewal or cell fate decisions in ESCs and MSCs, while
the role of the others remain to be investigated. Among all
the RTKs, the FGF, epidermal growth factor (EGF), and
platelet-derived growth factor (PDGF) receptors are import-
ant for regulating cell survival, proliferation, and differenti-
ation in both embryonic and adult stem cells [127]. FGF2,
also named bFGF (basic FGF), binds to members of the
FGF RTK family. FGF2 supports self-renewal but its
mechanism is still unclear [128,129]. FGF2 induces the de-
velopment of ectodermal and mesodermal cells from
hESCs, and can also support differentiation of hESC into
neural lineages [129]. In vitro studies with bFGF showed
that it increased human MSC proliferation potential, and
helped to retain osteogenic, adipogenic, and chondrogenic
differentiation potentials [130]. FGF induces proliferation
through the mitogen-activated protein kinase (MAPK)
cascade in various cell types. The TGF-b pathway is also
important in MSC differentiation into the osteogenic and
chondrogenic lineages [131]. The activin/nodal pathway,
which signals through the TGF-b pathway, cooperates
with FGF signaling in maintaining the pluripotency of em-
bryonic stem cells [132].

EGFR signaling induces the proliferation, motility, and
survival of MSCs. Two ligands, EGF and heparin-binding
EGF, promote ex vivo expansion of MSCs without trigger-
ing the differentiation into any specific lineage. In ESC, the
EGFR increases the level of glucose transporter 1, a major
glucose transporter in inner cell mass (ICM) of blastocyst,
hence help to meet the high energy demands of the cell
required for its proliferation [133].

PDGFRs are all involved in lineage commitment of pre-
differentiated ESCs and do not play a role in the self-
renewal of ESCs. PDGF is an angiogenetic factor and sti-
mulates blood vessel formation in EBs [134], and also can
promote cardiogenic differentiation in murine ESCs
(mESCs) [135]. During MSC differentiation, PDGF signal-
ing is significant in adipogenesis and chondrogenesis [136].

The endoplasmic reticulum kinase (ERK) 1/2 pathway,
also called p42/p44 MAPK pathway, can regulate different
cellular responses in somatic cells. ERK1/2 activation pro-
motes the differentiation of ESCs, whereas the suppression
of ERK1/2 pathway enhances self-renewal [137]. mESCs
have higher ERK1/2 activity when they undergo differenti-
ation. In mESCs, the activation of ERK1/2 via gp130 is
dependent on the phosphorylation of the SH2-domain-

containing cytoplasmic tyrosine phosphatase, SHP2.
Phosphorylation of Tyr757 in gp130 recruits SHP2, leading
to its tyrosine phosphorylation in jasmonic acid kinase
1-dependent manner [138]. SHP2 then acts as an adaptor
protein, associating with GRB2 (growth-factor-receptor-
bound protein 2) and, thereby, activates the Ras/MEK
(MAPK/ERK kinase)/ERK1/2 pathway. SHP2 may also as-
sociate with the scaffold protein GAB1 (GRB2-
associated-binder protein 1), as has been demonstrated in
other cell types, which may recruit phosphoinositol-
3-kinase, although this interaction remains to be shown in
ESCs [139]. Eliminating the SHP2-binding site from a chi-
maeric gp130 receptor in ESCs blocks the Ras/ERK1/2
pathway and increases self-renewal [140]. In MSCs ERK–
MAPK signaling is significant in adipogenic, chondrogenic,
and osteogenic differentiation [136].

Notch encodes a transmembrane receptor that is cleaved
to release an intracellular domain (Nicd) directly involved
in transcriptional control [141]. The Notch proteins, repre-
sented by four homologs in mammals (Notch1–Notch4),
interact with a number of surface-bound or secreted ligands
(Delta-like 1, Delta-like 3, Delta-like 4, Jagged 1, and
Jagged 2) [142]. Notch receptors are activated upon ligand
binding, which involves multiple cleavage events assisted
by members of A Disintegrin and metalloprotease protease
family and gamma secretase. Cleavage is followed by
translocation of the intracellular domain on Notch to the
nucleus, where it acts on downstream targets [143]. In
general, Notch activation leads to transcriptional suppres-
sion of lineage-specific genes, inhibiting differentiation in
response to inductive signals and leaving some progenitors
uncommitted but competent to adopt alternative fates
[144]. Notch receptors, Notch1 and Notch2, are expressed
throughout stem cell maturation. The Notch pathway has
been shown to promote neural differentiation in both
human and mouse embryonic stem cells [145]. Notch in
combination with EGFR pathway regulates stem cell
number and self-renewal in neural stem cells [146]. Loss of
EGFR signaling accelerates chondrocyte and osteoblast dif-
ferentiation in mice, suggesting that EGFR signaling may
negatively regulate bone cell differentiation [147]. The Hh
pathway is another cascade that plays a pivotal role in HSC
proliferation. The Hh gene is involved in various aspects of
embryonic development such as left–right asymmetry, an-
terior–posterior patterning of the limb bud, and neural tube
formation [148,149]. Sonic Hh promotes the proliferation of
adult stem cells from various tissues, including primitive
hematopoietic cells [150], mammary [151], and neural stem
cells [152].

Members of the Hox homeobox gene family are among
the first transcription factors to be implicated as critical reg-
ulators of lineage specification and stem cell development
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in a number of tissues, including the hematopoietic system
[153]. Among these, the transcription factor HOXB4 was
first observed to express at high levels among human
CD342CD382/loCD45RACD712 bone marrow cells that
were highly enriched in long-term culture-initiating cells,
but were absent in more mature progenitor populations
[154]. However expression of HOXB4-transduced HSCs
had no effect on the overall HSC pool size which was
observed to be maintained within normal limits [155].
There is also involvement of a number of other transcrip-
tion regulators like Oct4, Sox2, nanog, etc. Among these,
Oct4 is a major governing factor and master regulator of
pluripotency which is rapidly silenced when a stem cell
gets committed to a specific lineage [156]. Oct-4 is
expressed at high levels in mouse in pre-implantation
embryos and in ICM, embryonic carcinoma (EC), ESC,
and embryonic germ (EG) cells, and is down-regulated in
the majority of murine adult tissues excluding the germ
line [157,158]. This gene is a key factor in controlling self-
renewal of mESCs. The decrease or increase of Oct-4 ex-
pression in ESCs leads to differentiation into trophoblas/
endoderm and mesoderm, respectively [158]. Ingenuity
pathways analysis to identify signaling pathways involved
in trophoblast differentiation or function, leads to the
discovery of many genes which are involved in Wnt/
b-catenin, ERK/MAPK, Nuclear factor kB, and calcium
signaling pathways, further emphasizing their potential role
in trophoblast development [125]. This work provides an
in vitro functional genomic model to identify genes
involved in the trophoblast development and differenti-
ation. It also helps to understand the cellular and the mo-
lecular mechanisms involved in placental development and
clinically relevant to fetal development, fertility, and mater-
nal health [159]. Recent investigations have shown that
amino acids can also regulate cellular processes by altering
intracellular cell signaling pathways. The amino acid
L-proline has been identified as a component which is
required for ESC differentiation [160]. Some purinergic
receptors have also been shown to play a crucial role in de-
termining the phenotypic, proliferative, and differentiation
aspects of committed cells [161]. Retinoic acid (RA) acts
as a well-characterized inducer of differentiation by silen-
cing Oct4 locus [158]. Some nuclear repressors like apoAI
regulatory protein-1, COUP Transcription Factor 1, and
germ cell nuclear factor (also referred to as Nr6a1) can
also silence Oct4 [162]. In pluripotent ESCs, chromatin is
in decondensed state, containing numerous active histones
and a fraction of loosely bound chromatin proteins. As
cells differentiate, chromatin assumes condensation, silen-
cing histone marks, and structural chromatin proteins get
stably associated with chromatin [163]. Histone modifica-
tions, associated with differentiation involve the loss of

H3K4me3, H3K7, and H3K9 acetylation, at Oct4, whereas
others associated with H3K9me2 and me3 heterochromatin,
are gained via G9a histone methyltransferase-dependent
manner [164]. DNA methyltransferases like DNMT3a/3b,
are also recruited leading to CpG DNA methylation of
Oct4 promoter via G9a. Thus Oct4 and other ESC-specific
genes, undergo a stringent silencing mechanism to adopt a
state characteristic of heterochromatin during differentiation
[165]. Thus a complex interplay of many transcription
factors and signal transduction pathways are involved in
the differentiation of stem cells as shown in the Fig. 1 .

All that glitters is not gold
The emerging multipotential stem cell area can also have
many side effects and potential risks. The well known tran-
scription factors that are essential during reprogramming
and differentiation are also well-known carcinogens. Oct4
the master regulatory gene of reprogramming is the most
potent carcinogen, myc is an oncogene and klf4 also con-
tribute toward carcinogenesis [166]. Mice injected with
these factors have been reported to show teratoma forma-
tion. Thus applications in the human recipients, are not
totally risk free and this is the major hurdle in transform-
ation of a laboratory-produced stem cell to a clinically ap-
plicable modality. Also, these applications carry the risk of
genetic mutations, and the normal recipe of human genome
thus might get contaminated with exogenous genetic mater-
ial introduced by the viral vectors, chemicals, etc., which
may carry the risk of many diseases and other abnormal-
ities in the genotype and phenotype. These may accumulate
in the genome leading to long-term disease effects that
may be fatal for subsequent generations. A significant
amount of research is still required to understand and
predict the behavior of the stem cells during the therapeutic
applications. Understanding the basic cell biology and
physiology of the stem cell is very important before
embarking on a widespread use of this potentially useful
tool for the benefit of humanity. Extensive efforts and
refined techniques are needed so that the risks of genetic
mutations can be reduced to a minimum level and the con-
tamination of the human genome can be avoided.

Perspectives

To increase the production efficiency of stem cells, the
further exploration of the physiological, mechanical, and
chemical factors regulating the differentiation and repro-
gramming process is required. Technologies need to be
refined further to reduce the potent carcinogenic potential
of the vectors/chemical compounds to a tolerable level or
search for the natural alternatives to manipulate these cells.
More effective animal models can be developed to mimic
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human systems more efficiently, so that the effects pro-
duced in the animals can be studied over several genera-
tions before applying in humans. The sequence of
activation of various transcription factors and pathways
leading to differentiation is still not clear. The factors that
control or regulate the decision of the stem cell to differen-
tiate need to be deciphered. Present methods of differenti-
ation rely on the application of growth factors, chemicals,
or selective media that initiate the conversion of a subset of
cells into the desired lineage or allow expansion of a par-
ticular subset of cells. However, unless we understand the
mechanisms that operate to bring about the requisite
changes in phenotype, we cannot have controlled differen-
tiation. This will assure a better-quality control and make
stem cell-derived therapies financially and logistically more
viable. The time frame or the factors to determine when

the differentiation process becomes irreversible is also
unknown. All the factors which play a crucial role in stem
cell fate need to be studied thoroughly in order to ensure
the safety of the stem cell-based therapies.

The basic science of stem cell biology has been estab-
lished, however, translating it into an effective medical
treatment is a long and difficult process. It is possible that
what looks promising in cultured cells may fail as a
therapy in an animal model or when applied in human
trials. Once therapies are tested in humans, ensuring patient
safety becomes a critical issue and this means starting with
very few people until the safety and side effects are better
understood. The biology of stem cell modulation need
further analysis and understanding in order to unravel the
vague mysteries of stem cells and fully enjoy the benefits
of this profitable area.

Figure 1 Deciding the stem cell fate HSC, MSC, and iPSC can be made to differentiate in culture via introduction of certain small molecules

(chemical), via matrix/microgravity (physical) or spontaneously (environmental) due to some changes in their niche environment. These factors lead to

chromatin changes causing acetylation/deacetylation of certain epigenetic factors. They also initiate a signaling cascade via different pathways like Wnt,

notch, GSK-3b, etc., up- and down-regulation of certain transcription factors responsible for stemness like Oct3/4, c-Myc, nanog, etc. These changes

make a cell committed to a specific lineage, e.g. osteo, chondro or adipogenic, etc. These cells can be further manipulated in clinic for various

therapeutic purposes. However effective manipulation involves risk of mutation, immune rejection, and genome contamination. Lack of effective model

organism for experimentation, low efficiency of stem cell expansion in culture and insufficient information about reprogramming factors/molecules are

some of the bottlenecks in the path of resourceful implementation of this technology. These side effects can be reduced by having a thorough knowledge

of the signaling pathway during stem cell differentiation.
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