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The Forkhead box O (FOXO) family transcription factors
play critical roles in a series of cellular processes, including
the cell cycle, cell death, metabolism, and oxidative stress
resistance. FOXO proteins are subject to several post-
translational modifications, which are closely related to
their activity. In this paper, we review the post-translational
modifications of FOXOs and their biological functions.
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Introduction

The Forkhead box O (FOXO) is the O type subfamily of
the forkhead transcription factor superfamily. It is highly
evolutionarily conserved among species. In mammalian
species, FOXO mainly includes FOXO1, FOXO3, FOXO4,
and FOXO6, while its homolog genes, DAF16 and
dFOXO, exist in lower organisms, such as Caenorhabditis
elegans and Drosophila, respectively [1,2]. FOXO
members share conserved DNA-binding domains, forming
helix-turn-helix structures, which specifically bind to con-
served DNA sequence 50-TTGTTTAC-30 [3]. FOXO tran-
scriptionally activates or inhibits a series of downstream
targets, thereby involved in the regulation of various bio-
logical processes, including the cell cycle, cell apoptosis,
resistance to oxidative stress, and metabolism [4,5]. The ac-
tivity of FOXO is dynamically regulated in response to
various types or intensities of external stimuli. To further
understand the molecular mechanism of how the activity of
FOXO is regulated, many groups focus on the post-
translational modifications (PTMs) by which FOXO is
dynamically controlled. In this review, we will discuss the
multi-type post-translational regulations of FOXO, including
phosphorylation, acetylation, ubiquitination, and methyla-
tion, as well as the biological functions of these PTMs.

Phosphorylation of FOXO

FOXOs are subject to phosphorylation by a panel of protein
kinases at different sites leading to the alteration of their
subcellular location, protein stability, and DNA-binding
activity.

Akt/SGK protein kinases
The phosphoinositide 3 kinase (PI3/K) pathway is a major
regulator of FOXOs activity. Both the serine–threonine
kinases protein kinase B (also named as Akt) and serum/
glucocorticoid inducible kinase (SGK) are important down-
stream components of PI3/K signaling [6]. These two
kinases recognize the same substrate phosphorylation
motif, RXRXXS/T (R stands for arginine, X stands for any
amino acid, and S/T means serine/threonine), and have
been identified as the major enzymes for the phosphoryl-
ation of FOXO3 at Thr32, Ser253, and Ser315 [7–10]. The
phosphorylation of these key sites increases the association
with 14-3-3 proteins, which results in the translocation of
FOXO proteins from the nucleus to cytoplasm leading to their
transcriptional inactivation [7,9,11]. Furthermore, phosphor-
ylation of FOXO1 at Ser256 (counterpart of FOXO3 at
Ser253) alters its DNA-binding activity in vitro [12]. Akt is
more responsible for the phosphorylation of Ser253, while
SGK preferentially phosphorylates Ser315. Moreover, both
kinases efficiently phosphorylate the N-terminal Thr32
residue of FOXO3 [8]. It has been reported that the phos-
phorylation of Ser315 by SGK is required for casein kinase
1-mediated phosphorylation at adjacent sites Ser318 and
Ser321, which in turn enhances the nuclear export rate of
FOXO proteins [13].

Hippo/MST kinases
Mammalian sterile 20-like kinase (MST), which shares a
high degree of homology with the Drosophila ortholog
Hippo, plays an important role in the regulation of cell size
control and apoptosis [14,15]. Upon oxidative stress, MST1
binds to FOXO3 and phosphorylates Ser207 within its
Forkhead domain. MST1-mediated phosphorylation of
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FOXO3 disrupts its binding to 14-3-3 proteins, promotes
its nuclear accumulation and therefore induces the expression
of downstream pro-apoptotic genes that induce neuronal
cell death [16]. It has been reported that MST1 also
regulates FOXO1 through a similar mechanism [17].
Furthermore, the MST1–FOXO pathway also plays an
important role in drug treatment-induced cancer cell
death [18].

Cyclin-dependent kinases
Cyclin-dependent kinase 1 (Cdk1) can phosphorylate
FOXO1 at Ser249 and block FOXO1’s interaction with
14-3-3 proteins, driving FOXO1 into the nucleus to acti-
vate a cell death program in neurons [19,20]. Cdk2 also
specifically phosphorylates FOXO1 at the same site but
results in cytoplasmic localization and inhibition of
FOXO1 [21,22]. The mechanism of the opposite biological
outputs of FOXO1’s phosphorylation at Ser249 needs to be
further investigated.

AMP-activated protein kinase
The AMP-activated protein kinase (AMPK) plays a critical
role in the regulation of energy homeostasis in cells [23].
AMPK has been shown to phosphorylate FOXO3 at six
sites. Phosphorylation by AMPK leads to the activation of
FOXO3 activity without altering its subcellular localization
[24]. The AMPK–FOXO pathway is also conserved in
C. elegans. It has been reported AMPK phosphorylates
DAF-16 (FOXO ortholog in worm) at multiple sites and
activates DAF-16-dependent transcription [25]. The mo-
lecular mechanism by which AMPK activates FOXO
remains unclear.

ERK and IKK protein kinases
ERK has been shown to phosphorylate FOXO3 at Ser294,
Ser344, and Ser425, which results in its nuclear exclusion.
More importantly, phosphorylation of FOXO3 at these
sites renders it unstable due to the increased interaction
with the ubiquitin E3-ligase, MDM2 [26]. Similarly, activa-
tion of IKK has been proved to induce phosphorylation of
Ser644 on FOXO3. Phosphorylation at this residue leads to
both nuclear exclusion and degradation of FOXO3 proteins
[27]. Both ERK and IKK are identified as oncogenes in
tumorigenesis [28,29], which supports the hypothesis of
FOXO proteins as tumor suppressors.

Acetylation of FOXOs

Similar to the phosphorylation, acetylation has been shown
to regulate the transcriptional activity and mediate different
biological functions of FOXOs. The effect of acetylation
on FOXOs is controlled by the histone acetyltransferase
and histone deacetylases (HDACs).

Histone acetyltransferase
The CBP/P300 are the essential enzymes for the acetyl-
ation of FOXOs [30]. Among the numerous reported sites,
lysine242 and lysine245 of FOXO3 (lysine245, lysine248
of FOXO1) are of great importance: their acetylation se-
verely diminished FOXO’s DNA-binding capacity [31].
Furthermore, acetylated FOXO is more likely to localize to
the cytoplasm [32]. On the other hand, FOXOs can also
recruit CBP/P300 to the promoter of target genes.
Acetylation of histone leads to the transactivation of the
targets [33,34]. The dual effect of CBP/P300 on FOXO
regulation still needs to be further understood.

HDACs
Sirt1 is the first member of the Sir2 family in mammals
that has been demonstrated to play a critical role in longev-
ity through its deacetylase activity [35]. FOXOs have been
characterized as the essential substrate of Sirt1. Sirt1 and
FOXO3 formed a complex in cells in response to oxidative
stress. Sirt1 has a dual effect on the regulation of FOXOs:
Sirt1 increases the ability of FOXOs to induce cell-cycle
arrest and resistance to oxidative stress but inhibits the
ability to induce cell apoptosis [36,37]. Other members of
Sir2 family like Sirt2 and Sirt3 can also interact and deace-
tylate FOXO [38–40].

Recently, HDAC3 has been reported as a novel deacety-
lase of FOXO. HDAC4/5 recruits HDAC3 to FOXO,
which results in the acute transcriptional induction of
downstream genes via deacetylation and activation of
FOXO [41].

Ubiquitination of FOXOs

Polyubiquitination
The degradation of FOXOs is determined by the ubiquitin-
proteasome pathway. Several ubiquitin E3 ligases are
proved to be necessary for the ubiquitination of FOXOs.
For example, the E3 ligase MDM2 binds to FOXO3 to
promote its degradation. Protein kinase ERK is required for
this process [26]. Skp2, another E3 ligase, can recognize
the Ser256 phosphorylated FOXO1 and degrade it by poly-
ubiquitination [42]. The C-terminus of Hsc70-interacting
protein (CHIP) promotes the ubiquitination and degradation
of FOXO1 in smooth muscle cells [43]. A ring-finger E3
ligase COP1 has also been reported to mediate FOXO1’s
protein stability in Fao hepatoma cells [44].

Monoubiquitination
FOXO4 has been shown to be monoubiquitinated by
MDM2 upon oxidative stress [45]. Monoubiquitination of
FOXO induces its nuclear localization and enhances
FOXO-dependent transcriptional activity. A deubiquitinat-
ing enzyme named USP7 can inhibit FOXO4 activity
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through removing the monoubiquitin of it [46]. It has also
been shown that monoubiquitination has little effect on the
protein half-life of FOXO4 [45]. It is interesting that the
E3 ligase MDM2 is also reported to promote FOXO3’s
degradation through polyubiquitination. The dual effects of
MDM2 on different FOXO members need to be further
studied.

Methylation of FOXOs

Arginine methylation
It has been reported that FOXO1, like many other proteins,
can also be methylated by the protein arginine methyltrans-
ferase PRMT1. PRMT1 methylates FOXO1 at the conserved
Arg248 and Arg250, which directly blocks Akt-mediated
phosphorylation of FOXO1 at Ser253, thereby resulting in its
long-lasting retention in the nucleus, leading to oxidative-
stress-induced apoptosis [47]. Recently, the conserved
PRMT1–FOXO signaling has also been demonstrated in the
worms [48].

Lysine methylation
Methylation of lysines by different methyltransferases has
been demonstrated to play important roles in regulation of
both histone proteins and non-histone proteins [49].
Recently, our lab demonstrated that the methyltransferase
Set9 methylates FOXO3 at lysine 270. The FOXO3 methy-
lation leads to the inhibition of its DNA-binding activity
and transactivation [50]. Accordingly, the lysine methyla-
tion reduces oxidative stress-induced and FOXO3-mediated
Bim expression and neuronal apoptosis (Fig. 1 ).

Glycosylation FOXOs

Glycosylation is the enzymatic process that attaches glycans
to proteins, lipids, or other organic molecules. Proteins can
be glycosylated on different amino acid side chains, and
these modifications are designated as N-glycosylation and
O-glycosylation. It has been reported that FOXO1 can be
O-glycosylated and lead to the up-regulation glucose-6-
phosphatase and other gluconeogenic genes expression
[51,52].

Figure 1 Model for Set9-regulated FOXO function

Table 1 Summary of the post-translational modifications of FOXO proteins

Modification Enzyme Sites Effect on FOXO’s activity

Phosphorylation Akt/SGK T32, S253, S315 (FOXO3) �
Phosphorylation Casein kinase 1 S318, S321 (FOXO3) �
Phosphorylation MST1 S207 (FOXO3) �
Phosphorylation Cyclin-dependent kinase 1 S249 (FOXO1) �
Phosphorylation Cdk2 S249 (FOXO1) �
Phosphorylation ERK S294, S344, S425(FOXO3) �
Phosphorylation IKK S644 (FOXO3) �
Phosphorylation AMPK T179, S399, S413, S555, S588, S626 (FOXO3) �
Acetylation P300/CBP K245, K248, K262 (FOXO1) �
Polyubiquitination MDM2, COP1, Skp2, CHIP ND �
Monoubiquitination MDM2 �
Arginine methylation PRMT1 R248, R250 (FOXO1) �
Lysine methylation Set9 K270 (FOXO3) �
Glycosylation ND ND �

� means upregulated;� means downregulated.

ND, not determined.
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Summary and Prospective

We have reviewed recent findings of the PTMs of FOXO
proteins (Table 1). Further work is still needed to elucidate
the whole cross-talk map of FOXO PTMs. Additionally,
the in vivo roles of PTMs also requires identification by
transgene or knock-in animal models. A full understanding
of PTMs will help us to treat FOXO-related diseases, in-
cluding cancer and aging.
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