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Pluripotent stem cells are able to proliferate unlimitedly
and to generate all somatic cell types, thus holding a great
promise in medical applications. Epigenetic modifications
are believed to play crucial roles in regulating pluripo-
tency and differentiation. Recent genome-wide studies on
mammalian systems have revealed several types of large
chromatin domains which are associated with higher-
order organization of the genome. The elucidation of
genomic distribution and dynamics of these domains have
shed light on the mechanisms underling pluripotency and
lineage commitment.
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Introduction

Pluripotent stem cells (PSCs), including embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs),
are able to propagate themselves infinitely (self-renewal)
and to differentiate into all types of somatic cells (pluripo-
tency). The dual capacities have made PSCs ideal systems
for biological researches as well as promising tools in cell-
based therapy, disease modeling, and drug screening [1].
ESCs are derived from inner cell mass (ICM) in the pre-
implantation embryo [2–4], whereas iPSCs are repro-
grammed from somatic cells by forced induction of
pluripotency-associated transcription factors [5–7] or RNA
molecules [8,9]. Although iPSCs were thought as ESC-like,
recent evidence has indicated that the two types of PSCs
may be different in genetic and epigenetic stability [10].

Epigenetics is the study of mitotically heritable informa-
tion which is independent of DNA sequence alterations
[11]. Epigenetic mechanisms are crucial for normal devel-
opment, and aberrant epigenetic programming has been
linked to the occurrence of diseases. Furthermore, epigenet-
ic modifications are sensitive to environmental cues and
are reversible by the treatment of epigenetic drugs. Thus,

epigenetic has become an ‘epicenter’ in modern medicine
[12]. While core pluripotent factors (OCT4, NANOG, and
SOX2) and their regulatory circuitries are thought to
govern pluripotency [13,14], epigenetic mechanisms play
important roles in maintaining pluripotency and in fixing
the identities of differentiated cells. During cellular differ-
entiation and reprogramming, cells obtain new phenotypes
which are stable during cell divisions, yet their DNA
sequences remain largely unchanged. Furthermore,
knocking-out of epigenetic machineries resulted in embry-
onic lethality in vivo and impaired ES cell differentiation in
vitro [15], pointing to the importance of epigenetic modifi-
cations in development. Hence, the elucidation of epigenet-
ic signatures will help us to better understand the
molecular mechanisms underlining self-renewal, differenti-
ation, and reprogramming.

In the nucleus, DNA and its associated proteins are
packed into chromatin. The nucleosome, the fundamental
unit of chromatin, consists of an octamer of core histones
(two each of H2A, H2B, H3, and H4), and 147 bp of DNA
wrapped around the core histone particle. The N-terminal
tails of histone often experience covalent modifications
which are involved in multiple biological processes includ-
ing transcriptional regulation, DNA damage repair, and al-
ternative splicing [16]. The functional relevance of a
modification relies on the type of modification and the pos-
ition it occur. Histone acetylation is associated with open
chromatin and gene activation, the characteristics of eu-
chromatin. However, histone methylation is functionally
versatile: methylation on H3K4, H3K36, and H3K79 are
euchromatic marks, whereas those occurred on H3K9,
H3K27, and H4K20 are generally associated with repres-
sive chromatin. Furthermore, methylation on same posi-
tions may have different biological outcomes according to
the amount of methyl group. For example, di- and tri-
methylation of H3 lysine-9 (H3K9me2 and H3K9me3) are
repressive marks, whereas H3K9me1 is associated with
active chromatin. The detailed genomic distribution pattern
of these marks had been discussed elsewhere [17–19].
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Epigenetic modifications including histone marks can be
involved in multiple layers of epigenetic regulation. In the
first layer, modifications on regulatory regions such as pro-
moters and enhancers can change chromatin structure
locally, thereby affecting the expression of adjacent genes.
Most of epigenomic studies have focused on this layer. In
higher layers, large chromatin blocks can co-regulate gene
expression, form higher-order chromatin, and influence
chromosome positioning. Recently, the researchers have
started to explore this attractive field. In the last decade,
with the advent of high-throughput technologies including
microarray and next-generation sequencing, analyzing epi-
genetic modifications in genome scale (epigenomics) has
become prevalent. Extensive epigenomic experiments have
been performed to decipher epigenetic profiles in PSCs
and their differentiated counterparts. Here we highlight
recent advances on chromatin signatures in PSCs and dif-
ferentiated cells, with focuses on large chromatin domains
which affect higher-order chromatin and nuclear
architecture.

Functional Heterogeneity in PSC Cultures

As retaining properties of pluripotency, PSCs obtained
from current culture conditions are generally regarded as
homogenous cell population. However, recent evidence has
demonstrated that the PSC cultures contain functionally
distinct subpopulations. For example, at least two major
subpopulations have been identified in mouse ESC cul-
tures: one is ICM like, and the other is epiblast like. While
the pluripotent gene Oct4 is equally expressed in both
states, the ICM-like cells have higher expression levels on
the stem cell markers such as Nanog, Rex1, SSEA1, and
Stella [20–23]. Similarly, human ESC cultures can also be
divided into multiple subsets by two surface markers,
c-KIT and A2B5 [24]. More importantly, these subsets in
both mouse and human appear differentiation bias and
carry different epigenetic marks on some of the stem cell
genes. As sharing the same culture conditions, iPSCs can
be speculated to contain subpopulations as well. Thus,
these studies have indicated that in vitro PSC cultures are
functionally heterogenous cell populations. As epigenomic
studies cannot be conducted at a single-cell level, one
should use cautions to explain data from these mixed
populations.

Open Chromatin Structure in Pluripotent
Cells

The chromatin of PSCs, unlike that of differentiated cells,
appears some interesting features including more open con-
formation, looser binding with its associated proteins, and
higher physical softness [25–28]. By using electron

spectroscopic imaging, a recent study examined the dynam-
ics of chromatin structure from one-cell to early post-
implantation embryos, and found that the chromatin of
eight-cell embryos and ICM cells are highly dispersed and
indistinguishable from that of ESCs. However, trophecto-
derm and primitive endoderm cells displayed higher chro-
matin compaction levels, thus providing in vivo evidence
for more open chromatin in PSCs [29]. Consistent with
these observations, global transcription in both coding and
non-coding regions was found in ESCs, but the transcrip-
tion pattern became more limited upon differentiation [30].
Taken together, such evidence supports the notion that
ESCs have a higher plasticity compared with the differen-
tiated cells.

Bivalent Domains

Histone 3 lysine-4 trimethylation (H3K4me3) and
lysine-27 trimethylation (H3K27me3), catalyzed by
trithorax-group and polycomb-group (PcG) proteins, re-
spectively, are classic epigenetic marks essential for devel-
opment. H3K4me3 is associated with gene activation,
whereas H3K27me3 is linked to gene repression.
Intriguingly, the two functionally opposite modifications
are highly co-enriched on the promoters of key develop-
mental genes in both mouse and human ESCs, but less
co-exist in differentiated cells [31–34]. In addition,
genome-wide distribution pattern of H3K4me3 and
H4K27me3 are almost indistinguishable between human
ES and iPS cells [35]. Genes marked by these ‘bivalent
domains’ [32] are largely silenced in pluripotent cells. On
differentiation, some bivalent domains selectively resolve
to monovalent marks of either H3K4me3 or H3K27me3,
resulting in gene activating or remaining silencing in a
lineage-specific manner. It was proposed that bivalent
domains reflect a chromatin state ‘poised’ for activation, in
agreement with a higher plasticity in stem cells [32].

Furthermore, whole-genome chromatin immunoprecipi-
tation (ChIP)-seq analysis of histone modifications identi-
fied .2000 of bivalent domains in mouse ESCs, most of
which resolve to monovalent status in lineage-committed
cells [36]. Interestingly, the majority of bivalent domains
are located on CpG-rich promoters, whereas CpG-poor pro-
moters are generally absent of both H3K4me3 and
H3K27me3. Genome-wide mapping of PcG complexes
(PRC1 and PRC2) in mouse ESCs indicated that bivalent
domains can be separated into two classes: the first class
overlaps both PRC1 and PRC2 and the second class over-
laps only PRC2. Bivalent domains of the first class are
evolutionarily conserved and highly associated with devel-
opmental regulator gene promoters [37]. RNA
immunoprecipitation-seq experiments have identified
.9000 transcripts physically associated with PRC2.
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Notably, 21% of bivalent domains in mouse ESCs show
PRC2-interacting transcripts, suggesting that RNAs may
regulate stem cell fate by recruiting PcG complexes to bi-
valent domains [38].

Recently, Hong et al. analyzed H3K4me3 and
H3K27me3 in fractionated human ESC subsets, and found
that some lineage-specific genes showing bivalency in
unfractionated ESCs are actually monovalent in the func-
tionally distinct cell subpopulations, although pluripotent
genes (OCT4 and NANOG) are comparably expressed in
these subsets. These data suggested that the observation of
bivalent domains may reflect the heterogeneity of ESC cul-
tures [24]. Nevertheless, further investigations, especially
large-scale analysis of fractionated PSCs, are needed to
confirm this observation.

Large Heterochromatin Domains

Due to the ‘gene-center’ tradition in this field, most of epi-
genomic studies have focused on small regions of histone
modifications on regulatory elements such as promoters
and enhancers. Nevertheless, recent literatures have started
to expand the scope to explore broader modifications on
other parts of the genome. Using native ChIP coupled with
microarrays (NChIP-chip) and a novel statistical strategy
designed to find large domains, Wen et al. [39] analyzed
the genome-wide distribution of histone 3 lysine-9
dimethylation (H3K9me2), a mark of facultative hetero-
chromatin, in undifferentiated mouse ESCs, in vitro differ-
entiated ESCs, and two primary tissues (liver and brain).
The authors found surprisingly large stretches of
H3K9me2 modifications termed as large organized chro-
matin K9-modifications (LOCKs), which affect up to 46%
of the genome. Genomic regions with LOCKs are generally
gene poor and with low density of CpG dinucleotides, and
the boundaries of LOCKs enrich for the binding of
CCCTC-binding factor (CTCF), the major insulator in
mammalian genome. LOCKs are highly conserved between
human and mouse and are strongly associated with
domain-wide gene regressing in a tissue-specific manner.
The formation of LOCKs relies on G9a, a histone methyl-
transferase depositing H3K9. More importantly, using the
same statistical criteria that defined tissue specific LOCKs,
they showed that both the genome coverage and domain
size increase from undifferentiated ESCs to in vitro differ-
entiated cells (coverage, 4% vs. 31%; average size, 43 vs.
93 kb). The authors further proposed that LOCKs may fa-
cilitate the epigenetic memory of cell-type-specific higher-
order chromatin in differentiation and development [39].

By reanalyzing the original datasets of Wen et al., Filion
and Steensel [40] claimed that there is no fundamental dif-
ference between H3K9me2 domains in undifferentiated
ESCs and differentiated cells. Of note, the two-state hidden

Markov model algorithm they used may have omitted
quantitative differences of LOCKs between the two cell
types [41]. Recently, Lienert et al. [42] mapped H3K9me2
on promoters and chr19 in mouse ESC and neurons differ-
entiated from ESCs, and they claimed that H3K9me2 mod-
ifications cover .50% of the chr19 genome in both cell
types with only a 5% increase in neurons [42].
Interestingly, quantitative differences of H3K9me2 have
also been detected in the Lienert’s study, as indicated by
quantitative polymerase chain reaction (PCR) results in
their Figure 2(B) [42]. Furthermore, it is known that neur-
onal lineages have higher plasticity, as also observed by
Wen et al., which shows that LOCKs are much less present
in brain (10%) than in liver (46%), indicating that the dy-
namics of H3K9me2 in differentiation may be lineage
specific.

In summary, the core issue of these debates is whether
the quantitative differences of LOCKs are due to detection
bias or reflecting underling biological complexity. Given
recent observations that ESC cultures are functionally heter-
ogenous, one should be very careful to explain the weaker
signals seen in the datasets of ESCs. Further investigations
on fractionated ESC populations should provide key evidence
to address these debates. Furthermore, a global reduction of
H3K9me2 LOCKs and domain-wide increase of H3K4me2
in GC-rich LOCKs are observed during epithelial-to-mesen-
chymal transition (EMT), a process acquiring stem cell traits
[43], suggesting that quantitative difference of LOCKs may
be functionally relevant. Interestingly, this epigenomic repro-
gramming is dependent on the function of histone demethy-
lase lysine specific demethylase 1, which may have dual
roles in repressing and activating by forming different com-
plexes during EMT [43].

In addition, other types of repressive histone marks,
H3K27me3, and lysine-9 trimethylation (H3K9me3), are
also found to form broad domains in mammalian genomes.
Pauler et al. [44] applied an algorithm named broad local
enrichments to analyze ChIP-chip data generated in mouse
embryonic fibroblasts on chr17, and they found large
blocks of H3K27me3 in both silenced genes and intergenic
regions. This observation was confirmed by reanalyzing
published ChIP-seq datasets using the same algorithm [44].
Furthermore, genome-wide analysis in human ESCs and
fibroblasts using ChIP-seq shows that the genome coverage
of H3K27me3 is 4% each in ESCs, but increases to 12%
(H3K27me3) and 16% (H3K9me3) in fibroblasts [45]. The
sizes of domain also increase for both makers. Introduction
of fibroblast into iPSCs is associated with substantial re-
duction of these repressive domains [45]. Collectively,
these data demonstrate that the process of stem cell differ-
entiation may accompany with large-scale expansion of
heterochromatin domains, although its generality is awaited
for further determination in other lineages.
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Lamina-Associated Domains

It has long been recognized by electron microscopy that
heterochromatin usually locates on nuclear periphery in
interphase nucleus [46]. Furthermore, artificially tether of
genes on nuclear lamina leads to heritable gene repression
[47], suggesting an important role of lamina association in
epigenetic regulation. Guelen et al. [48] constructed a
genome-wide map of chromatin2lamina interactions in
human fibroblasts using the DamID approach. These
authors defined �1300 lamina-associated domains
(LADs), with sizes of 0.1–10 Mb, affecting �40% of the
human genome. These domains are gene poor and low
transcribed. Insulator CTCF is found to enrich on the
boundaries of LADs. These data indicated a domain-like
organization of human genome in the interphase nucleus.
Further genome-wide mapping of LADs was expanded to
mouse ESCs, in vitro differentiated neural progenitor cells
(NPCs), and terminally differentiated astrocytes [49].
Similar to the human data, they identified �1100–1400
LADs with sizes from 40 kb to 15 Mb in each cell types,
covering �40% of the mouse genome. These LADs show
relatively small differences, overlapping by 73%–87%,
between the three stages of differentiation. Interestingly,
the authors also noticed lower signal of LADs compared
with that of differentiated cells, suggesting that lamina as-
sociation in ESCs may be less robust or more variable
among individual cells of ESC populations [49]. It is
known that nuclear membrane of ESCs contains only
lamin B but not lamin A/C, whereas the differentiated cells
have both types of lamin, consistent with more fluidic
nuclei in ESCs. It would be interesting to explore whether
lack of lamin A/C affects membrane2chromatin interacting
in ESCs.

Intriguingly, LOCKs and LADs mark similar genomic
locations as 82% of placenta LOCKs overlapping LADs in
fibroblasts. However, causal relationships underling the
correlation remain elusive, as knocking-down of G9a did
not change the overall positioning toward nuclear rim in
mouse ESCs [50].

Partial DNA Methylation Domains

Methylation at the fifth-position of cytosine (5 mC) is the
most studied epigenetic modification, which plays a vital
role in gene regulation and genome organization. Although
DNA methylation has been studied for decades, the
genome-wide distribution of 5 mC has remained unclear
until recently. Lister et al. [51] described the first
nucleotide-resolution maps of methylated cytosines in
human ESCs and fetal fibroblasts by genome-wide bisulfite
sequencing (MethylC-seq). Surprisingly, �25% of

methylated cytosines in human ESCs occur in the
non-CpG contexts, but only 0.02% is found in fibroblasts,
suggesting that ESCs may use a unique system for methy-
lation. While CpG methylation in promoters is associated
with gene repression, methylation on gene bodies is found
to be positively correlative to gene expression in fibroblasts
but not in ESCs.

Another unpredicted result in the Lister’s paper is the
finding of large continuous regions showing less methyla-
tion in fibroblasts compared with ESCs, which are termed
as partially methylated domains (PMDs) [51]. The PMDs
comprise �40% of genome regions in fibroblasts.
Interestingly, gene within or near PMDs are much less
expressed in fibroblasts than in ESCs. More importantly,
PMDs are strongly associated with large H3K9me3 and
H3K27me3 domains identified in fibroblasts [51], and the
homologous regions of H3K9me2 blocks in mouse differ-
entiated cells [41], which suggests a reverse correlation
between PMDs and large heterochromatin domains.

Similar to the observation of PMDs, genome-wide
mapping of cancer methylomes identified large regions that
are less methylated in cancer cells than in the normal [52].
These hypomethylation blocks encompass .50% of the
genome, and significantly overlap PMDs [85% overlap-
ping, odds ratio (OR) ¼ 6.5, P , 10216], LOCKs (89%
overlapping, OR ¼ 6.8, P , 10216), and LADs (83% over-
lapping, OR ¼ 4.9, P , 10216) [52], which suggests that
these parts of genome experience dramatic and complicated
epigenetic programming in both development and disease.

Replication Timing Domains

In eukaryotic cells, DNA replication occurs in a defined
temporal order in S phase, and the replication timing of a
specific part of the genome is thought to associate with its
chromatin organization. For example, early replication is
associated with active chromatin which places on interior
nucleus, whereas late replication is linked to repressive
chromatin located on nuclear and nucleolar periphery.
Genome-wide analysis of replication timing in mouse
ESCs and differentiated NPCs demonstrated that chromo-
somes can be segmented into large domains of megabase
sizes [53]. These ‘replication domains’ are relatively small
and discrete in ESCs but consolidate into larger zones in
neural progenitors, consistent with changes of gene expres-
sion and nuclear positioning of chromosome. The status of
replication domains is correlated to the content of GC and
LINE1 repeats, rather than gene density. A more compre-
hensive study profiled genome-wide replication domains in
22 mouse cell lines representing 10 early developmental
stages [54]. About 45% of the genome is shown to change
replication timing during these states. Of note, a set of
early-to-late replication timing switches are seen between
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ESCs and Epiblast stem cells (EpiSCs), coinciding with
the appearance of compacted chromatin near the nuclear
periphery in EpiSCs, and then these regions keep largely
unchanged in later developmental stages. Interestingly,
during the induction of iPSCs, replication timing of these
regions are difficult to reprogram into ESC-like state. As
expected, there is a positive correlation between early repli-
cation and active chromatin marks such as H3K4me,
H3K9ac, and H3K36me3. However, the relationship
between late replication and histone marks is still compli-
cated. It seems that H3K9me2 is associated with late repli-
cation, but causal relationships remain unclear [55].

Outlook

In summary, evidences from multiple resources have all
pointed to domain organization of the genome. These large
chromatin domains are highly dynamic in cellular differen-
tiation and reprogramming, and are significantly associated
with large-scale gene regulation and 3D organization of
chromatin. More discrete patterns of large chromatin
domains seen in PSCs further support the idea of higher
plasticity in pluripotent cells. Importantly, due to function-
ally heterogeneity in PSC cultures, extensive analysis of
fractionated cell populations will provide information for
the ‘real’ epigenomic features of pluripotent cells.
Although correlations have started to be established
between some of large domains such as LOCKs and
LADs, their physical interactions, and causal relationships
to nuclear architecture remain to be determined. The
mechanisms for establishing and maintaining of these large
domains in mammalian cells are still unclear. Recent iden-
tification of non-coding RNAs (ncRNAs) associated with
PRC2 indicated that ncRNAs may play important roles in
establishing heterochromatin domains [38,56]. Finally, the
basic principles and methodologies of the chromatin
domains can be also applied to the disease studies, thereby
enhancing our understanding of the epigenetic basis under-
lying development and disease.
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