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Snake venom lectins have been studied in regard to their
chemical structure and biological functions. However, little
is known about lectins isolated from Bothrops atrox snake
venom. We report here the isolation and partial functional
and biochemical characterization of an acidic glycan-
binding protein called galatrox from this venom. This
lectin was purified by affinity chromatography using a lac-
tosyl-sepharose column, and its homogeneity and molecu-
lar mass were evaluated by high-performance liquid
chromatography, sodium dodecyl sulfate–polyacrylamide
gel electrophoresis, and matrix-assisted laser desorption/
ionization-time-of-flight mass spectrometry. The purified
galatrox was homogeneous and characterized as an acidic
protein (pI 5.2) with a monomeric and dimeric molecular
mass of 16.2 and 32.5 kDa, respectively. Alignment of
N-terminal and internal amino acid sequences of galatrox
indicated that this protein exhibits high homology to other
C-type snake venom lectins. Galatrox showed optimal
hemagglutinating activity at a concentration of 100 mg/ml
and this effect was drastically inhibited by lactose, ethyle-
nediaminetetraacetic acid, and heating, which confirmed
galatrox’s lectin activity. While galatrox failed to induce
the same level of paw edema or mast cell degranulation as
B. atrox crude venom, galatrox did alter cellular viability,
which suggested that galatrox might contribute to venom
toxicity by directly inducing cell death.
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Introduction

The snake genus Bothrops, which belongs to the family
Viperidae, is distributed in Central and South America [1].
Envenomation by Bothrops spp. can result in severe local
tissue damage, including myonecrosis, hemorrhage, and
edema [2,3]. Importantly, life-threatening bleeding and coa-
gulopathy can result in renal failure and shock [2,3].

Snake bites arouse a substantial concern for the
Brazilian public health. Bothrops genus is responsible
for high number of envenomation in Brazil. The mor-
tality rate following Bothrops species envenomation has
been estimated at 2.4%. Importantly, this mortality rate
approaches nearly 8% in patients failing to receive
medical attention [4]. In particular, the species Bothrops
atrox can be found in the northern region of Brazil and
is responsible for 90% of snakebites in humans in that
region [1,5].

Bothrops venom appears to be composed of a variety of
biological molecules, including proteins, enzymes, and
peptides. Previous studies have suggested that several of
these factors may be responsible for the clinical sequela
associated with envenomation [3,6,7]. According to Neiva
et al. [1], the B. atrox crude venom from northern Brazil
contains several biologically active proteins, such as serine
and metalloproteinases, phospholipases A2, L-amino acid
oxidases, bradykinin-potentiating peptide, cysteine-rich
protein, PL2 inhibitor, and svVEGF.

In addition to enzymes, lipids, and other mediators,
lectins, also known as glycan-binding proteins (GBPs), are
also present in snake venom. GBPs are proteins that bind
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specifically and reversibly to carbohydrates. The sugar-
binding activity of these proteins is often located within a
distinct polypeptide region designated as the carbohydrate
recognition domain (CRD) [8,9]. GBPs are expressed by all
animals, plants, fungi, microbes, and most viruses, and par-
ticipate in diverse biological processes including embryo-
genesis, development, cell differentiation, migration,
activation, apoptosis, regulation of immune response,
cancer, immune tolerance, and others [10–12]. Based on
the sequence and structural homology of their CRDs,
animal lectins are grouped into different families, which
include galectins and C-type, I-type, M-type, L-type,
P-type, R-type, etc., along with the glycosaminoglycan-
binding (GAG-type) proteins [10–13].

Several snake venom lectins have been isolated from
different genera, including Agkistrodon, Bitis, Bothrops,
Bugarus, Crotalus, Dendroaspis, Lachesis, and
Trimeresurus, and their structures and functions have been
characterized [14–29].

In the Bothrops genus, different lectins have been puri-
fied and characterized. These proteins belong to the C-type
(calcium-dependent) lectin family, which have dimeric
disulfide-linked subunits with a subunit molecular mass of
�14 kDa and an affinity for b-galactoside residues. The
biological activities promoted by these lectins includes
hemagglutination, mitogenic activity, formation of paw
edema, induction of platelet aggregation, increase in the
vascular permeability, renal effects, hypotension, and cyto-
toxicity toward cell lines [14,15,19,22,29–32].

Gartner et al. [14] isolated the first snake venom lectin
from B. atrox crude venom, called thrombolectin. It was
characterized as a disulfide-linked homodimer with an
apparent molecular mass of �28 kDa. The isoelectric point
(pI) analysis of the isolated lectin showed a heterogeneous
pI of 6.4 and a triplet from 9.5 to 9.7 [14,15].
Thrombolectin promoted hemagglutination in a calcium-
and carbohydrate-dependent manner, induced platelet
aggregation, and did not have mitogenic activity
[15,30,33]. However, the N-terminal amino acid sequence
and internal peptide sequence of thrombolectin remained
unknown.

In the present study, we aimed to extend the lectin
studies on B. atrox venom. Therefore, we isolated an acidic
galactoside-binding C-type lectin (galatrox) from the
venom of B. atrox, a species distributed in northern Brazil,
and described its biological and biochemical properties,
including partial primary structure. This lectin, galatrox,
although a potential isoform of thrombolectin, was unique
from the previously characterized C-type lectin from B.
atrox. The results will provide important data for investi-
gating the role of envenomation caused by B. atrox, and
suggest the potential use of this lectin for general biomedi-
cal research.

Materials and Methods

Materials
The crude venom from B. atrox was obtained from
Serpentarium SANMARU (São Paulo, Brazil) and Institute
Butantan (São Paulo, Brazil). The B. atrox snake venom
used in this study originated from northern Brazil (state of
Pará). All chemicals used were of analytical grade.

Animals
Male BALB/c specific pathogen-free mice weighing 18–
22 g were provided by the Animal Facilities of the
Faculdade de Ciências Farmacêuticas de Ribeirão Preto,
Universidade de São Paulo. Animal care procedures were
performed according to COBEA (Brazilian College of
Animal Experimentation) guidelines and the experimental
protocols approved by the Committee for Ethics on Animal
Use (CEUA) from University of São Paulo, USP (Protocol
number: 05.1.822.53.8).

Purification of B. atrox venom lectin (galatrox)
Crude venom (150 mg) was suspended in phosphate-
buffered saline (PBS, pH 7.4) and centrifuged (2500 g,
10 min, 258C) to remove insoluble materials. Then the
supernatant was loaded onto a 5-ml bed of lactosyl-
sepharose column (Sigma, St. Louis, USA). The column
was washed with PBS to elute the unbound material,
which we called Lac2. The bound material (Lacþ, con-
taining galatrox) was eluted with PBS supplemented with
lactose (100 mM). Fractions of 1 ml were collected. A
PD-10 column (GE Healthcare, Life Sciences, Little
Chalfont, UK) equilibrated in PBS was used to remove
lactose from the galatrox preparations. The homogeneity of
lactose-free galatrox samples was evaluated by sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–
PAGE) and high-performance liquid chromatography
(HPLC). This chromatographic procedure was performed
using a reverse-phase column (4.6 � 150 mm2 ODP 50,
Shodex), previously equilibrated with solution A (0.1%
trifluoroacetic acid). The sample was eluted with a linear
gradient 0–80% of solution B [acetonitrile (ACN) 60%,
0.1% trifluoroacetic acid] at a flow rate of 0.8 ml/min. All
chromatographic procedures were monitored by absorbance
at 280 nm. The protein concentrations were determined
using a microassay based on the Bradford dye-binding
procedure [34].

Sodium dodecyl sulfate–polyacrylamide gel
electrophoresis
SDS–PAGE was performed on 12% gels using a Mini
V-8.10 Vertical Gel Electrophoresis System (Gibco BRL,
Gaithersburg, USA) [35]. Samples were dissolved in
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sample buffer containing SDS in the presence or absence
of 2-mercaptoethanol (2-ME). After running (80–120 mA,
200 V), the gels were stained with Coomassie brilliant
blue G250. Proteins with known molecular mass were used
as standards (Amersham Pharmacia Biotech, Little
Chalfont, UK).

Isoeletric focusing
The pI of the purified lectin was determined by isoelec-
tric focusing as described by Arantes et al. [36]. Briefly,
the isoelectric focusing was carried out on sheets of 7%
polyacrylamide gel containing BioRad (Hercules, USA)
carrier ampholytes (pH 3–14). After prefocusing
(30 min, setting: 100 V, 30 mA, 5 W), the samples were
applied as drops of liquid on the surface of the gel. The
isoelectric focusing was performed at 100–1500 V for
�4 h (setting: 1500 V, 30 mA, 5 W). Focusing was com-
pleted when the voltage reached 1500 V and the current
was 2 mA or less. As soon as the current was switched
off, the pH gradient was determined. Strips of the gel (1
� 2 cm) were cut along the gel sides, immersed individu-
ally in 0.5 ml of Milli-Q water for 2 h, and measured for
their pH. The remained gel containing the proteins was
stained with silver nitrate.

Matrix-assisted laser desorption/
ionization-time-of-flight-mass spectrometry
The molecular mass of galatrox was determined by matrix-
assisted laser desorption/ionization-time-of-flight-mass
spectrometry (MALDI-TOF-MS). MS analysis was per-
formed in MALDI-TOF-MS (Axima Performance;
Kratos-Shimadzu, Manchester, UK) linear mode previously
calibrated with insulin, cytochrome c, aldolase and bovine
serum albumin (BSA). Sample was mixed (1:1) with
a-cyano-4-hydroxycinnamic matrix and applied on MALDI
target plate by the dried-droplet method. The mass spectrum
was collected with an average of 100 scans, 10 laser shots/
scan.

In situ gel trypsin digestion and MS analysis
The protein separated by SDS–PAGE was subject to
in situ gel band, then digested with 0.5 mg of modified
trypsin (Promega Co., Madison, USA) as described by
Williams and Stone [37]. The tryptic peptides were
desalted in a micro tip filled with POROS R2 (Perseptive
Biosystems, Foster City, USA) and eluted in 60% methanol
in 5% formic acid for MS analysis. The trypsin digestion
of protein was dried and re-dissolved in 5 ml of 10 mg/ml
a-cyano-4-hydroxycinnamic acid, then 2 ml was applied to
the MALDI target using the dried-droplet method, followed
by analyzing by MALDI-TOF-MS (MALDI micro MX;
Waters, Manchester, UK), which was calibrated with a
mixture of angiotensin II, renin, and adrenocorticotropic

hormone fragment 17–39 (ACTH 17–39) (mass accuracy
,50 ppm). The MS analysis of the tryptic peptides was
also carried out in an electrospray triple-quadrupole mass
spectrometer Quatro II (Micromass, Manchester, UK) by
direct infusion (300 nl/min) under the following conditions:
capillary voltage was maintained at 2.8 kV, cone voltage at
40 V, and cone temperature was set to 1008C. The par-
ameters for MS1 precursor ion scanning and production
scanning were optimized with synthetic peptide, angioten-
sin II (Peptide Synthesis Laboratory, UNIFESP, São Paulo,
Brazil) for the highest signal-to-noise ratio and MS was
calibrated with PEG (50–2000 amu). In the production
scanning mode–collision-induced dissociation mass spec-
trometry (CID-MS/MS), the collision energy was set to
25–35 eV and argon was used as the collision gas with a
partial pressure of 3.0 � 1023 mTorr. The spectrum was
collected with an average of 20–50 scans (2–5 s/scan) and
processed by the MassLynx software v.3.3 (Micromass).
The amino acid sequence of the tryptic peptides was
deduced from the series of b and y ion fragments produced
by CID-MS/MS.

N-terminal amino acid sequencing
The elution peak from reverse-phase HPLC containing pur-
ified galatrox was lyophilized and submitted to Edman
degradation. N-terminal amino acid sequencing of this
lectin was performed using a PPSQ-33A automatic sequen-
cer (Shimadzu, Kyoto, Japan). Phenylthiohydantoin deriva-
tives of amino acids were identified by comparing their
retention times with the 20 PTH–amino acid standard
mixture using an online reverse-phase HPLC.

Amino acid sequence alignment
The amino acid sequences (N-terminal, residues 1–54;
tryptic peptide 1, residues 62–73; and tryptic peptide 2,
residues 75–84) of the galatrox were aligned with other
snake venom C-type lectins using the ClustalX software
(version 2.0) [38]. The alignments were based on the simi-
larities between amino acids found in the primary
sequence, taking into account conservative exchanges and
the position of peptides containing the amino acid
sequences of the positions N-terminal to C-terminal to the
primary structures aligned.

Hemagglutinating activity assay
To further examine the lectin activity of galatrox, we exam-
ined the agglutination potential of this protein. Initially,
human blood (ABO-H blood group) was collected with
heparin, and the erythrocytes were washed by centrifu-
gation (300 g, 10 min) with PBS. The hemagglutination
was determined based on the method described by Nowak
et al. [39]. Assays were performed using microtiter V-well
plates with several concentrations of galatrox (0.25–
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300 mg/ml). Each well contained 50 ml of 4% suspension
of human trypsinized erythrocytes in PBS (pH 7.4), plus
1% (w/v) of BSA [40]. The negative control contained
50 ml of cell suspension and 50 ml of PBS. Following the
addition of erythrocytes, the plates were shaken briefly and
incubated at room temperature (�258C) for 2 h. In order to
evaluate sugar specificity, galatrox (100 mg/ml) was incu-
bated for 2 h at 258C with a-lactose, L-(2)-fucose,
a-sucrose, D-(þ)-mannose, D-(þ)-galactose, and
D-(þ)-rhaminose. All sugars were tested in the same con-
centration range (1–300 mM). To examine the Ca2þ

requirements and thermal stability, galatrox (15 mg/ml) was
incubated with ethylenediaminetetraacetic acid (EDTA,
5 mM) or heated at 1008C for 15 min, respectively. The
formation of an agglutinated erythrocyte mantle was
assessed by visual analysis and the results were expressed
as hemagglutination arbitrary units (HAUs). One unit was
defined as the minimum detectable mantle formation.

Edema-inducing activity assay
To evaluate potential biological properties of galatrox, we
next determined whether galatrox could induce paw edema,
a previously recognized activity of B. atrox venom. The
edematogenic effect of galatrox was assessed based on the
method described by Levy [41]. Crude venom solution
(10 mg/ml), galatrox (0.75 mg/ml), or PBS alone was
injected (50 ml) in the subplantar region of three groups of
five BALB/c male mice (18–22 g). The contralateral paw
received the same volume of PBS. The progression of
edema was evaluated with a low-pressure pachymeter
(Mitutoyo Co., Tokyo, Japan) at the intervals of 0, 0.5, 1,
2, 4, 12, 24, 48, and 72 h after injection. Edema-inducing
activity was expressed as the percentage increase in paw
thickness compared with the contralateral paw.

b-Hexosaminidase release assay
Mast cell degranulation was assessed by a
b-hexosaminidase release assay using RBL-2H3 cells, a rat
mast cell line, as described by Pierini et al. [42] and
Hoffmann et al. [43]. Briefly, RBL-2H3 were maintained as
monolayers in microtiter wells containing Dulbecco’s modi-
fied Eagle’s medium, 15% fetal bovine serum, 0.434 mg/ml
glutamine, 100 units/ml penicillin, and 100 mg/ml strepto-
mycin. The RBL-2H3 cells were sensitized with IgE
anti-DNP (500 ng/ml, Sigma) overnight in a 96-well micro-
plate. After sensitization, the cells were washed twice with
PBS–BSA (1 mg/ml, pH 7.4) and then treated with B. atrox
crude venom or with galatrox at 2.5, 5, and 10 mg/ml for
45 min at 378C. The positive control was cell stimulated
with dinitrophenylated-human serum albumin antigen
(50 ng/ml, Sigma-Aldrich). To determine the amount of
b-hexosaminidase activity released by the cells, 25 ml of
supernatant and 150 ml of 8 mM b-hexosaminidase

substrate (p-nitrophenyl-N-acetyl-b-D-glucosaminide), in
0.1 M citrate buffer (pH 4.5), were mixed in separate micro-
plates and incubated for 30 min at 378C. The reaction was
quenched by addition of 50 ml of 0.2 M glycine, pH 10.
PBS-treated-sensitized RBL-2H3 cells were used to
measure spontaneous release of b-hexosaminidase. The
total enzyme release was obtained by lysing the cells with
1% Triton-X 100 prior to the removal of the supernatant.
The release of b-hexosaminidase was determined by
measuring the absorbance of the enzyme reaction product at
405 nm in a microwell plate reader (Molecular Devices,
Spectra MAX PLUS) and comparing with the total product
associated with cells lysed in 1.0% Triton X-100.

MTT assay
The human cell line HL-60 was obtained from the
American Type Culture Collection. Cell viability was
assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide] assay as described
previously [44]. At the end of the 24 h treatment of HL-60
cells with galatrox, MTT (Sigma-Aldrich) solution was
added to the culture medium (500 mg/ml final concen-
tration) and the cells were incubated for an additional 4 h.
The reaction was stopped by the addition of 100 ml of
dimethyl sulfoxide to the cell culture. HL-60 cells were
treated with different concentrations of galatrox (100, 125,
150, 175, 200, 225, and 250 mg/ml). Untreated cells were
used as a negative control and cyclophosphamide was used
as a positive control. MTT reduction was detected by
measuring the absorbance at 570 nm. The results were
expressed as percentage of MTT reduction activity by cells
as an indication of cell viability.

Statistical analysis
Statistical analysis was performed with the Student’s t-test.
P , 0.05 was considered statistically significant. Results
were expressed as mean + SEM.

Results

Isolation and purification of galatrox
The purification of galatrox was successfully carried out in
one chromatographic step. Galatrox was purified from B.
atrox crude venom by affinity chromatography on a
lactosyl-sepharose column [Fig. 1(A)]. The bound material
(Lacþ), containing galatrox, was submitted to a desalting
PD-10 column to remove lactose. The high level of
homogeneity of the galatrox preparation was confirmed by
HPLC, which showed a single peak [Fig. 1(B)]. The
SDS–PAGE analysis of the purified galatrox demonstrated
a band at �29 kDa, and when incubated with reducing
agents the molecular mass reduced to �15 kDa, which
suggested that this lectin existed as a dimer mediated by
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disulfide bond formation [Fig. 1(C)]. The isoeletric focus-
ing analysis showed that galatrox has a pI value of 5.2
[Fig. 1(C)]. The MALDI-TOF mass spectrum analysis of
the purified galatrox preparation showed molecular mass
monomer of 16264.09 Da and dimer of 32529.32 Da
[Fig. 1(D)].

Primary structural characterization of galatrox
The N-terminal amino acid sequence of galatrox was
obtained by automatic Edman degradation. The N-terminal
54 residues were determined to be NNCPQDWLPMNG
LCYKIFDELKAWKDAEMFCRKYKPGCHLASIILYGES
PEWAE. In addition, in situ trypsin gel digestion of the
�15 kDa band was analyzed by MALDI-TOF-MS and
ESI-CID-MS/MS, which resulted in double-protonated
ions, m/z 1369.710 and m/z 1426.875 [Fig. 2(A)] whose
amino acid sequences were KDFSWEWTDR and
GHSEVWLGLWDK, respectively, internal fragment of the
primary structure of galatrox [Fig. 2(B) and (C)]. The two
major ions peptide fragments, m/z 1369.710

(KDFSWEWTDR) and m/z 1241.662 (DFSWEWTDR),
detected by mass spectrometry correspond to the same
region of galatrox in which one missed trypsin cleavage
occurred [Fig. 2(A)]. The alignment showed that galatrox
N-terminal residues presented high homology to other
Bothrops spp. lectins (BiL: 95% and BJcuL: 97% identity).
Also, in the tryptic peptide 2, the identity was 100% when
compared with the C-type lectins from Bitis, Crotalus,
Bothrops, and Trimeresurus. Particular amino acids were
highly conserved (Fig. 3), such as cysteine residues
involved in disulfide bond formation.

Galatrox-induced agglutination of human erythrocytes
Purified galatrox agglutinated all types of trypsinized
human erythrocytes (Aþ, Bþ, ABþ, and Oþ). However,
erythrocytes isolated from blood group ABþ individuals
demonstrated the most sensitivity to galatrox-induced
agglutination (data not shown). Maximum agglutination
occurred at concentrations of nearly 100 mg/ml using ABþ

type group [Fig. 4(A)]. To examine the monosaccharide

Figure 1 Purification of galatrox from Bothrops atrox crude venom (A) Lactosyl-sepharose affinity chromatography column. The unbound material

(Lac2) was removed with PBS and the lactose-bound material (Lacþ) was eluted with PBS plus lactose (100 mM). The pI of galatrox was determined

by isoelectric focusing. (B) Purified galatrox sample was submitted to a HPLC procedure using a reverse-phase column, with an elution linear gradient

0–80% of ACN solution at a flow rate of 0.8 ml/min. All chromatographic procedures were monitored by absorbance at 280 nm. (C) SDS–PAGE

analysis of the Lacþ material in reducing (R: lanes 1 and 2) or non-reducing (NR: lanes 3 and 4) conditions. The mass of molecular markers (MM) is

indicated in the figure and expressed in kDa. (D) Mass spectrometry analysis of galatrox performed in MALDI-TOF-MS.
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specificity of galatrox, the relative ability of different carbo-
hydrates to inhibit galatrox-induced agglutination was deter-
mined. Galatrox exhibited differential sensitivity to
inhibition by different carbohydrates with a-lactose display-
ing the most potent ability to block agglutination
[Fig. 4(B)]. In addition, the inclusion of EDTA (5 mM) or
pre-treatment with heat also prevented galatrox hemaggluti-
nation activity [Fig. 4(C)]. Importantly, the unbound protein
fraction (Lac2) was devoid of hemagglutination activity;
however, several concentrations of B. atrox crude venom
demonstrated this biological property (data not shown).

The lectin from B. atrox did not induce paw edema and
mast cell degranulation
To accomplish this, galatrox (37.5 mg/mice paw) was
injected, following the evaluation of potential paw edema.
Although crude B. atrox venom induced significant edema,
galatrox failed to induce similar changes (Fig. 5).
Consistent with this, RBL-2H3 mast cells treated with gala-
trox (2.5–10 mg/ml) showed similar levels of
b-hexaminidase release, a surrogate for mast cell activation,
compared with negative control (Fig. 6). In contrast,
RBL-2H3 cells treated with crude venom (2.5–10 mg/ml)
released significant levels of b-hexaminidase (Fig. 6).
Taken together, these results suggest that the ability of

crude venom to induce edema likely reflects factors that
occur in addition to or independent of galatrox for effective
edema formation.

Galatrox was cytotoxic to HL-60 cells
Although galatrox failed to alter paw edema formation or
mast cell degranulation, B. atrox crude venom also induced
severe cell death. We next hypothesized that galatrox might
contribute to B. atrox crude venom toxicity by inducing
cell death. To test this, we examined the potential ability of
galatrox to alter the viability of HL-60 cells. Importantly,
galatrox induced significant cell death in HL60 cells in a
dose-dependent manner, with an IC50 close to 250 mg/ml,
causing 58% + 1.4% cell death after 24 h of treatment
(P , 0.05). However, the maximum cytotoxic effect of
galatrox was lower than the positive control (Fig. 7). These
results demonstrated that galatrox can significantly alter
cellular viability and suggest that galatrox may contribute
to the B. atrox venom-induced pathophysiology by indu-
cing cell death.

Discussion

The evolution of significant number of venomous snakes
in the world resulted in a wide variety of venoms, many of

Figure 2 Peptide mass analysis (A) MALDI-TOF-MS peptide mass fingerprint obtained by in situ trypsin gel digestion of the �15 kDa band protein

(galatrox). ESI-CID-MS/MS of double protonated ions of (B) m/z 685 (1369.710)—KDFSWEWTDR and (C) m/z 713 (1426.875)—

GHSEVWLGLWDK. The two major ion peptide fragments showed in the figure (1241.662 and 1369.710) represent the same amino acid sequence. The

mass difference of 128.048 corresponds to one missed trypsin cleavage (extra lysine residue).
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which contain highly active toxins composed of a wide
range of chemical components, ranging from small mol-
ecules to large proteins. These toxins can vary considerably
in structure and function among individuals, species,
genera, or families [45].

The present work describes the purification and partial
biochemical and biological characterization of galatrox, an
acidic galactoside-binding C-type lectin from B. atrox
snake venom. Galatrox was purified by a procedure
similar to most galactoside-binding lectins from animal and
plant sources, using a single chromatographic affinity step

on a lactosyl-sepharose column. The purified galatrox had
a high level of homogeneity [Fig. 1(A) and (B)] [15, 21,
46–49].

The SDS–PAGE analysis indicated that galatrox was a
disulfide-linked homodimeric protein with a molecular
mass of �30 kDa under non-reducing conditions, while it
showed monomer with an apparent molecular mass of
�15 kDa under reducing conditions [Fig. 1(C)]. The selec-
tive reaction of 2-ME (reductor agent) to sulfhydryl groups
of cysteine residues strongly suggested that monomer for-
mation following reduction likely reflected the cleavage of

Figure 4 Evaluation of the hemagglutination activity of galatrox (A) Galatrox promoted the hemagglutination of type ABþ human erythrocytes.

(B) Galatrox (100 mg/ml) was tested in the presence or absence of a-lactose, L-(2)-fucose, a-sucrose, D-(þ)-mannose, D-(þ)-galactose and

D-(þ)-rhaminose). (C) Galatrox (15 mg/ml) was tested in the presence of EDTA or after heating. PBS was used as negative control (NC). The results

were expressed as HAUs (see Materials and Methods section).

Figure 3 Comparison of the amino acid sequence of galatrox with other snake venom galactoside-binding lectins using ClustalX version 2.0
Conserved cysteine residues are denoted in bold ‘C’ letters. Gaps are indicated by ‘2’, while ‘*’ indicates the positions which have a single, fully

conserved residue, ‘:’ indicates related groups that are strongly conserved, and ‘.’ indicates that related groups with weaker conservation. The N-terminus

of the native lectins is located at the position þ1 and recombinant lectins at the position 223. The internal tryptic peptides derived from galatrox are

indicated in the boxes and positioned based on the amino acid sequence of the following lectins: B. insularis lectin (BIL—gi:82126834) [21];

B. jararacussu lectin (BJcuL—gi:34922459) [49]; Bitis arietans lectin (PAL—gi:34922645) [16]; Crotalus atrox lectin (RSL—gi:126130) [70]; Crotalus

ruber lectin (CRL—gi:118572769) [46]; Bothrops pirajai lectin (BPL) [22]; Trimeresus stejnegeri lectin (TSL—gi:432509) [71]. The percentage of

amino acid residue identity was given by aligning each sequence (N-terminal, Peptide 1 and Peptide 2) individually.
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disulfide bonds responsible for dimer formation. However,
other conformational changes following reduction could
account for the prevalence of monomers following
reduction.

Previous studies demonstrated that the venom lectins iso-
lated from B. atrox (thrombolectin), Bothrops godmani,
Bothrops jararacussu, Bothrops pirarai, and Bothrops

insularis were partially characterized in regard to their bio-
chemical functions. All venom lectins display a common
SDS–PAGE profile with a single band of �14 and
�28 kDa in reductive and non-reductive conditions,
respectively [14,18,19,22,29,32], suggesting lectins are
generally conserved among these species. Interestingly,
similar to galatrox, the mammalian b-galactoside-binding
lectin, galectin-1, is also homodimeric protein with non-
covalently linked �14 kDa monomers [50,51].

The yield of galatrox from crude venom fractionation
was �1.0% of the total protein (data not shown).
Generally, snake venom C-type lectins are present in a low
amount in crude venoms. The yield of Lachesis muta lectin
is 0.89% [24], BiL (a lectin from B. insularis) 0.5% [21],
thrombolectin (B. atrox) 1.22% [15], and B. moojeni lectin
0.52% [52]. Bothrops newiedi lectin presented the highest
yield from crude venom (2.48%) [52].

Galatrox presented an acidic pI of 5.2 [Fig. 1(B)], which
was different from thrombolectin, another lectin isolated
from B. atrox. The pI of the lectin presented with a single
band of 6.4 and a triplet of 9.5–9.7 [15]. This difference
may be attributed to the ontogenetic characteristics related
to the process of species adaptation. Daltry et al. [45]
demonstrated that a large intraspecies variation existed in
snake venom composition using an isoelectric focusing
approach. Interestingly, this variation could be associated
with geography and diet.

Amino acid sequencing of galatrox provided a total
of 76 residues, 54 from N-terminal determination and
22 from two internal tryptic digestion peptides deduced
from their CID-MS/MS fragmentation spectra (Fig. 2).
Multiple alignments with other galactoside-binding snake
venom lectins provided a theoretical positioning of the
lectin internal peptides and the composition of its
primary sequence (Fig. 3). The present data indicated
that galatrox shares characteristic amino acid sequences

Figure 5 Edematogenic activity in the mice paw Fifty microliters of

galatrox (37.5 mg/paw) were injected in the mouse hind paw. PBS was

used as negative control and crude venom was used as positive control.

The progression of edema was evaluated with a low-pressure pachymeter

at 0, 0.5, 1, 2, 4, 12, 24, 48 and 72 h after injection. The results are

expressed as the percentage increase in paw thickness compared with the

contralateral paw. Values are given as mean + SEM. *P , 0.05

compared with negative control (PBS).

Figure 6 Effects of galatrox treatment on the degranulation of
RBL-2H3 cells RBL-2H3 cells sensitized with IgE anti-TNP were

stimulated with crude venom or galatrox at the following concentrations

(mg/ml): 2.5, 5, and 10. Sensitized RBL-2H3 cells treated with PBS or

DNP-HAS antigen were used as negative (N) or positive (P) control,

respectively. The b-hexosaminidase activity released was expressed by

percentage of total enzyme activity obtained from Triton X-100 cell lysed

(see Materials and Methods section). The results are shown as mean+
SEM and are representative of three independent experiments. *P ,

0.0001 compared with negative control.

Figure 7 Evaluation of the cytotoxic effect of galatrox The HL-60

cell line was treated with different concentrations of galatrox: 100, 125,

150, 175, 200, 225, 250 (mg/ml) for 24 h. Untreated cells were used as

negative (N) control and cyclophosphamide treated cells were used as a

positive (P) control. The results were expressed as percentage of cell

viability. Values are given as mean+SEM of the three independent

experiments. *P , 0.05 compared with negative control.
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and a high conservation of cysteine residues with other
C-type lectin family members [53].

Núñez et al. [54] presented a comparative analysis of the
proteomes of the venoms of B. atrox specimens from
different regions in South America, including Columbia.
Among the several proteins studied, a galactose-specific
lectin with apparent molecular mass of 14/28 kDa was
described. Although no lectin activity or carbohydrate
specificity was described for this protein, the N-terminal
sequence of 16 amino acids of this protein was identical
(100%) to a lactose-binding lectin (BJcuL) isolated from
the venom of B. jararacussu [49] and galatrox. However,
in contrast to our results, Núñez et al. [54] did not detect a
protein with the same N-terminal sequence in the venom of
adult animals of B. atrox from Brazil. In order to perform a
comparative analysis of crude venom composition by
HPLC and SDS–PAGE, we submitted B. atrox crude
venom derived from northern Brazil (state of Pará), used
by our group, to purify galatrox to the same reverse-phase
HPLC procedure described by Núñez et al. [54]
(Supplementary Fig. S1). This approach demonstrated that
the galatrox elution time is similar to the galactose-specific
lectin described to crude venom of B. atrox from Colombia
[54], suggesting a similar lectin or isoform of the pre-
viously described protein. Interestingly, also in contrast to
Núñez et al. [54], others authors [1], using a transcriptome
analysis, identified the open-reading frame of mRNA of a
lactose-specific lectin (C-type lectin) from a cDNA library
of the venom gland derived from a sub-adult B. atrox
specimen from northern of Brazil (Amazonas region).
These studies in association with our findings indicated
that crude venom of B. atrox from northern Brazil could
contain a lectin. Based on these considerations, we suggest
that differences between our results and previous studies
may reflect the age of the animals, gender and geographical
variations in the locations from which the snakes were cap-
tured [1,54]. Full sequence analyses of the proteins isolated
from each group are needed to determine the exact simi-
larities and/or differences between galatrox and other
similar previously described proteins.

The b-galactoside-binding lectins have been found in a
variety of plants and vertebrate organisms, including snake
venom and typically calcium ions are essential to their
agglutination activity [8,10,11]. The evaluation of galatrox-
induced hemagglutination of type ABþ human erythrocytes
showed that this effect was inhibited preferentially by
a-lactose [Fig. 4(B)]. Interestingly, L-(2)-fucose displayed
more inhibition than D-(þ)-galactose, despite the fact that
fucose is not a component of lactose (galactose b1–4
glucose). These results coupled with the ability of galatrox
to recognize ABþ erythrotcytes suggested that galatrox can
bind cell surface glycoconjugates of human erythrocytes
that presents fucosylated glycans with terminal galactose

residues, such as blood group antigens. The ability of heat
and EDTA to inhibit galatrox-induced agglutination
demonstrates a requirement for the native intact protein and
a requirement for divalent cations in lectin binding
[Fig. 4(C)]. In addition, whereas crude venom agglutinated
erythrocytes, the Lac fraction did not demonstrate the same
activity, indicating that the major component of this venom
responsible for this lectin activity was fully adsorbed to the
lactosyl-sepharose matrix (data not shown). Therefore,
these results suggested that galatrox belongs to the snake
venom C-type galactoside-binding lectin group due to its
ability to exert carbohydrate recognition activity by binding
to galactoside residues in a Ca2þ-dependent manner [53].

Galatrox apparently has no significant effect on plasma
coagulation in vitro nor does it induce platelet aggregation
(data not shown). In contrast, lactose-specific lectins from
Lachesis muta, Ancistrodon piscivorous leukostoma, and
Crotalus atrox stimulated the aggregation of human plate-
lets at 4–76 mg/ml and this effect was inhibited by lactose
[33]. However, in the same experiments, thrombolectin
occasionally caused aggregation [33]. A C-type lectin puri-
fied from the snake venom of Crotalus ruber did not
induce platelet aggregation even at higher concentrations
(73 mg/ml) [33,46]. Thus, the capacity to induce platelet
aggregation apparently varies among snake venom lectins
due to structural variations [29].

Prominent local edema is a common clinical finding in
victims bitten by Bothrops sp. This response is mediated
by myotoxic phospholipases A2 [55] and metalloprotei-
nases [56]. The contribution of snake venom lectins to this
biological event is still unclear [29]. In this study, treatment
with 37.5 mg/paw of galatrox did not induce edema com-
pared with PBS and crude venom (Fig. 5). Similarly,
BTL-2, a small isolectin isolated from Bryothamnion
triquetrum, did not induce an evident inflammation and/or
edematogenic effect after injection into the hind paw
of rats [57]. However, BJcuL (a lectin purified from B.
jararacussu) induced acute phase edema, which was main-
tained for up to 6 h after injection, and increased vascular
permeability in mouse hind paws [29]. In addition,
B. godmani lectin caused acute edema formation that was
inhibited by prior administration of cyproheptadine in mice
(a histamine and serotonin receptor antagonist), indicating
a possible participation of mast cell degranulation on this
event [18]. Although some Bothrops venom lectins are able
to promote edema formation, these proteins make up only
a small percentage of the crude venom, suggesting that
these lectins are probably not the major contributor to
venom-induced edema [18,29].

Mast cell degranulation can promote protection against
snake envenomation by releasing proteases that degrade
venom toxins [58,59]. In the literature, it has been
described that some animal lectins, such as galectin-3 and
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MNCF [60,61], induce mast cell degranulation. Based on
these reports, we evaluated the ability of galatrox to induce
mast cell degranulation. However, this lectin did not
promote the release of b-hexaminidase from RBL-2H3
cells (Fig. 6). Also, Aragón-Ortiz et al. [27] did not
observe a histamine release from mast cells when incubated
with L. muta stenophrys lectin. Taken together, these
results suggested that snake venom lectins are not necess-
arily important in mast cell envenomation protection.

Several lectins have been found to possess anti-cancer
properties. They are used as therapeutic agents, preferen-
tially binding to cancer cell membranes, causing cytotox-
icity via inducing apoptosis, autophagy, or necrosis, and
inhibiting the tumor growth [62,63]. In this work, we
observed that galatrox demonstrates a remarkable cytotoxic
activity in HL-60 cells (human promyelocytic leukemia
cells), with an IC50 around 250 mg/ml (Fig. 7). Galectin-1
(300 mg/ml), another animal b-galactoside lectin, binds to
HL-60 cells and does not induce apoptosis or inhibition of
cell growth after 24–72 h of treatment [64]. In addition,
different galectin family members can promote the modu-
lation of cell growth, inhibition of microbial invasion,
tumor progression, and metastasis [65–67]. On the other
hand, BJcuL, a b-galactoside snake venom lectin, was able
to suppress the cell viability of different human tumor cell
lines [31]. The effects of lectins on cancer biology and
immune response are associated with their specificity in
carbohydrate recognition [65–68]. Therefore, further struc-
tural and biological studies concerning galatrox involve-
ment in cancer biology are necessary.

Historically, studies examining snake bite envenomation
have sought to elucidate the mechanism of venom-induced
toxicity as a method of developing potential therapeutics in
these patients and possibly identifying a biologically active
substance that may be useful in biomedical research [69].
Indeed, toxins isolated from Bothrops spp. crude venoms
have been used as molecular tools to understand many
physiological and pathological events [2]. Therefore, the
inhibition of these molecules represents an important strat-
egy in the treatment of snake envenomation [69]. Despite
the inability of galatrox to induce edema, mast cell degra-
nulation, or interfere with homeostasis, the ability of gala-
trox to significantly alter cellular viability suggests that
galatrox might contribute to the cell death that can accom-
pany envenomation.

In summary, based on the results obtained from IEF,
HPLC, N-terminal amino acid sequence and MALDI-TOF
mass spectrometry procedures, we purified a homogenous
lectin, galatrox. Our results suggested that galatrox is an
acidic protein (pI 5.2) with a monomeric and dimeric mol-
ecular mass of 16.2 and 32.5 kDa, respectively.
Importantly, this purified lectin from B. atrox displayed
hemagglutinating activity to human erythrocytes, which

was dependent on Ca2þ and inhibited by lactose.
Biologically, galatrox altered HL-60 cell viability while
failing to induce significant mast cell degranulation. Also,
this protein is not edematogenic and does not appear to
interfere with hemostasis. Based on structural and biologi-
cal aspects of galatrox, we suggest that galatrox is similar,
but not identical to the previously described thrombolectin.
Further studies will be necessary to understand the biologi-
cal role of galatrox during snake envenomation.

Supplementary data

Supplementary data are available at ABBS online.
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