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In mammals, DNA methylation, characterized by the
transfer of the methyl group from S-adenosylmethionines
to a base (mainly referred to cytosine), acts as a major
epigenetic modification. In parallel to DNA sequences
arrangement, modification of methylation to DNA
sequences has far-reaching influence on biological func-
tions and activities, for it involves controlling gene tran-
scription, regulating chromatin structure, sustaining
genome stability and integrity, maintaining parental
imprinting and X-chromosome inactivation, suppressing
homologous recombination as well as limiting transposa-
ble elements, during which DNA methyltransferases
(DNMTs) and methyl-binding proteins play important
roles. Their aberrance can give rise to dysregulation of
gene expression, cell maltransformation and so on. Hence,
it is necessary to gain a good understanding of these two
important kinds of proteins, which will help to better
investigate the epigenetic mechanisms and manipulate the
modifications according to our will based on its reversibil-
ity. Here we briefly review our current understanding of
DNMTs and methyl-binding proteins in mammals.
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Introduction

The occurrence of an incident is invariably attributed to
internal and external causes. For biological events, typical gen-
etics acts as the former, while epigenetics serves as the latter
because of its properties of noninterference to DNA sequences
and responses to environmental signals [1]. With the com-
pletion of human genome project, investigation into epige-
netics is becoming rather fascinating and intensive, among
which DNA methylation, a major epigenetic modification, is
being paid more attention to. Currently, it is commonly
acknowledged that DNA methylation is involved in control-
ling gene transcription, maintaining genome stability and

integrity, parental imprinting and X-chromosome inactivation,
as well as limiting transposable elements in mammals [2].

DNA methylation preferentially occurs at the C5 pos-
ition of cytosine in the context of CG, forming the minor
bases, 5'-methylcytosines, which account for approximately
1% in the mammalian genome [3] and are mostly found in
CpG islands [2]. The so-called CpG island features at least
200 bp in length and a G 4 C content of 50% as well as a
CpG frequency (observed/expected) of 0.6 [4]. The
enzymes responsible for DNA methylation are referred to
as DNA methyltransferases (DNMTs) that catalyze the
reaction through the transfer of the methyl group from
S-adenosylmethionine (AdoMet) to cytosine [5]. Murine
DNMTI1 was the first reported mammalian DNMT by
Gruenbaum et al. [6] in 1982. During the past decades,
several enzymes harboring methyltransferase activity have
been identified.

Although DNA methylation patterns could be estab-
lished by DNMTs, there emerges a question of how to
decipher the information encoded in the methylated
sequences. Up to now, methyl-CpG-binding proteins are
regarded as the interpreters of the DNA methylation signal,
for they have the ability to bind methylated DNA. A family
including MeCP2, MBD1, MBD2, MBD3, MBD4, charac-
terized by a methyl-binding motif, has been identified in the
mammals [7]. Seemingly, it is indispensable for methyl-
CpG-binding proteins to harbor a methyl-binding motif.
Nevertheless, it is challenged by the discovery of a new
protein named Kaiso without a methyl-binding motif [§].

In this review, a brief overview of the methyltransferases
in mammalian will be presented, followed by descriptions
of methyl-binding proteins (MBDs).

Mammalian DNA MTases

Here we mainly focus on DNMT1, DNMT2, and DNMT3.
They all have 10 conserved motifs: I-X in the carboxyl-
terminal region, among which motifs I and X create
Adomet-binding site by folding together; motif IV encom-
passes the prolylcysteinyl dipeptide serving as the active

Acta Biochim Biophys Sin (2010) | Volume 42 | Issue 4 | Page 243

¥20z Iudy g1 uo 1senb Ag 608/E¥2/v/zh/e101e/sqge/woo dno olwepeoe//:sdiy woly papeojumoq



DNA methyltransferases of mammals

Table 1 Genomic localizations of DNMTs in four different species of mammals

Species DNMT1 DNMT2 DNMT3a DNMT3b DNMT3L
Homo sapiens 19p13.2 10p15.1 2p23 20ql11.2 21@22.3
Mus musculus 9A3 2A1 12A2—-A3 2A2—-A3 10C1
Rattus norvegicus 8ql3 17q12.3 6ql4 3q41 20p12
Bos taurus 7ql15 13 11 13 1

site; motif VI functions in protonating the three positions
of the target cytosine via the glutamyl residue within it;
and between motifs VIII and IX is the target recognition
domain [5]. And their genomic localizations involving four
mammals were shown in Table 1.

DNMTT1 and its isoforms

Up-to-date, four isoforms have been identified for
DNMTI1, namely DNMTls, DNMTlo, DNMTI1b, and
DNMTI4E37¢ [9,10]. Interestingly, an untranslated tran-
script, DNMT 1p, has also been discovered [11].

DNMTTIs (Fig. 1), also known as DNMT1 or DNMTTla,
consists of N-terminal regulatory domain and C-terminal
catalytic domain connected by glycine—lysine (GK) repeat
[9], both of which are indispensable, since the normal
activity of DNMT s is based on the correct folding confor-
mation [12].

As the maintenance MTase, DNMT1s functions in the
heritance of pre-existing methylation patterns from parent
strands to newly synthesized daughter strands [9]. In fact,
maintenance of DNA methylation is not performed bona
fide with an error frequency of approximately 5% per CpG
site per cell division [13], which has been established by
quantitative studies of endogenous CpG sites [14]. The

N-terminal regulatory domain

overall methylation state, however, stays stable [13]. How
does DNMTT1s work? It is coupled with replication fork.
During the early S phase of cell cycle of somatic cells,
DNMT1s, after being translated, is transported into nucleus
by virtue of nuclear localization signal (NLS), targets to
replication foci under the guide of targeting replication foci
(TRF), and then attaches to hemimethylated DNA strands
embedded in euchromatin in a complex of DMAPI and
PCNA via NLS-containing domain, zinc-binding domain
as well as catalytic domain [15]. When entering into the
late S phase, replication foci appear in heterochromatin and
the complex becomes HDAC2 attached [16]. In the
process, polybromo-1 homology domain (PHD) of
DNMT1s may interplay with HDAC, which could facilitate
the maintenance of repression state of chromatin [17].
Alternative pathway is replication independent, which
occurs during G2 and M phases and could be regarded as
an auxiliary way [18].

As for its distribution, DNMTTs is found in embryo pre-
implantation stages, although global genomic demethyla-
tion begins after fertilization. In mouse, although in low
concentration, it was confined to cytoplasm at pronuclear
and one-cell stage and distributed wholly in the cell from
the two-cell stage [19]. It has been reported that proper

C-terminal catalytic domain

HDAC2 Catalytic center
—— HDAC1——
DMAP-1-binding domain ATRX homology GK repeat
| PBDNLS TRF | PHD | | NMwviw X X
DNMT1(s) M1 T IO [y o I Y EEE N | 1D
DNMT1o
+16aa
BN -gzm:—:- I AN SN E—
—Exon3-6
AE3-6
ONMTT™ w1 WEE . mEE — )
DNMT2 (NEE NN W17 DNMT2y (bovine)

Figure 1 Schematic drawing of the architecture of human DNMT1, DNMT2 and their splicing isoforms with the exception of bovine DNMT2y
PBD, PCNA-binding domain; NLS, nuclear localization signal; TRF, targeting replication foci; ATRX homology, also known as Cys-rich-region, namely
zinc-binding motif; PHD, polybromo-1 homology domain; GK repeat, glycine-lysine repeat; the remaining are the six most conserved motifs, with
catalytic center located in motif IV. Interaction domains of HDAC1 and HDAC?2 are indicated. DNMT2 only consists of C-terminal catalytic domain.

DNMT2y just has 63 amino acids via a premature stop codon.
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concentration of DNMTT1s is essential for the maintenance
of methylation patterns of imprinted genes during the early
embryo development [20], for either its absence or overex-
pression is lethal to embryos [21]. In the adult tissues,
DNMTI1s shows a high expression as the predominant
form [22]. Once it is dysregulated, normal somatic cells get
susceptible to malignancy [23]. It has been established that
DNMT1s overexpression serves as a hallmark in cancers,
such as prostate cancer [24] and endometrioid carcinomas
[25]. However, some evidence shows that genomic DNA
methylation was hardly impaired in the absence of
DNMTTs in the given cancer cells [26]. It can be explained
by the point that different cancer cells have a different
dependency on DNMTT1s expression for the maintenance
of DNA methylation and survival [27,28].

Although DNMT1 is present in the preimplantation
embryos in mouse, it is believed that it fails to function
and DNMT1o plays a real role instead [29]. As the oocyte-
specific isoform, DNMT 1o, shorter than DNMT1s due to
the loss of the foremost region of the N-terminal, is located
in cytoplasm of both oocytes and preimplantation embryos
of porcine and mouse with the exception of eight-cell stage
when it traffics into nucleus. This behavior of ‘traffic’ is of
significance, for its abnormity could give rise to gene
ectopic expression [30]. Unexpectedly, it failed to identify
oocyte-specific DNMTTI1 in sheep [31] and bovine [32].
However, surprisingly, a novel isoform of DNMTI, con-
taining 13 additional amino acids encoded by the unspliced
exon between exons 12 and 13, was observed in the sheep
oocytes, preimplantation embryos and early fetal lineages
other than adult tissues. Its absence could lead to embryo-
nic developmental arrest at late morula stage [31].

Another spliced variant of DNMT1, DNMT1b, which
contains 16 additional amino acids comparing with
DNMTIs and is first identified in human tissues, retains
almost all the biological properties of DNMTl1s and dis-
plays robust activity, although having a low expression
level [33,34], seeming that DNMT b acts as an assistant of
DNMT1s. Distinctions between them require further inves-
tigation. The bovine DNMT1b lacks the DMAP1-binding
region, expressing lower than DNMT1a and conforming to
a tissue-specific mode of regulation [32].

Later work shows a novel variant DNMT125 ¢ with a
deletion of part of the DMAPI! interaction domain and
PCNA-binding domain corresponding to the exons 3—5 in
MTI1KO and DKO cell lines, losing the ability to bind
PCNA, but it is still a functional MTase in maintaining
genomic methylation [10]. With respect to DNMTlp, it is a
spliced transcript, regarded as exclusive and untranslatable
in pachytene spermatocyte. An identical transcript,
however, has been detected in skeletal muscles. More sur-
prisingly, its translated product has also been detected and
found to be the same as DNMTlo [35], which strongly

challenges the traditional perspective that DNMTIp is an
untranslated transcript [11]. The questions of whether it
also exists in other tissues and what roles it respectively
plays in spermatogenesis and myogenesis need to be
answered.

DNMT?2 and its isoforms

Among MTases, DNMT2 (Fig. 1) is a severely truncated
protein, containing only 10 consensus motifs. It has low
expression levels in all the tissues examined, and has no
detectable MTase activity [36]. In vitro experiments
showed that it still has the ability to attach to DNA [37].
Later, evidence showed that DNMT2 has weak MTase
activity both in vivo and in vitro [38,39], suggesting that
the N-terminal domain seems unnecessary for MTase
activity. Intriguingly, it has been demonstrated that
DNMT?2 has specificity in methylation of non-CpG dinu-
cleotide in Drosophila [40]. Whether similar mechanisms
could be extended to mammals remains to be confirmed.
Recently, a new discovery was made that human DNMT?2
could catalyze RNA methylation [41]. Given that both
DNA and RNA can act as substrates and that the affinity of
the former to DNMT2 is lower than that of the latter, it is
assumed that DNMT2 might be an evolutionary product
for MTase transited from a DNA to an RNA target [42].
Additionally, both in testes and in preimplantation embryos
a novel isoform is identified of DNMT2, DNMT2-gamma
(DNMT?2v), seemingly a nonfunctional protein caused by a
premature stop codon [43].

DNMT3 and its isoforms

DNMT3 has three members, including DNMT3a,
DNMT3b, and DNMT3L. To our knowledge, DNMT3a
owns four isoforms (DNMT3al to DNMT3a4) and
DNMT3b eight isoforms (DNMT3bl to DNMT3b8)
(Fig. 2).

Compared with DNMT1s, DNMT3a and DNMT3b (also
respectively known as DNMT3al and DNMT3bl) are
shorter in length and own the unique structure of tetrapep-
tide of proline-tryptophan-tryptophan-proline (PWWP)
[44]. The loss analysis of PWWP shows its role in directing
to chromatin [45], particularly to major satellite regions in
pericentric heterochromatin. Notably, the PWWP motif of
NDMT3b but not DNMT3a has the ability to combine
DNA [46].

By definition, both DNMT3a and DNMT3b are
de novo MTases responsible for establishment of methyl-
ation patterns of unmethylated DNA strands during devel-
opment [47]. They have been experimentally demonstrated
to be indispensable for embryogenesis [48]. DNMT3b '~
mouse fails to develop to term, and mouse with loss of
DNMT3a could just sustain life for a short period after
birth [49]. It could be explained that, during mouse early
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Figure 2 Schematic drawing of the architecture of mouse DNMT3a,
3b, 3L and their isoforms with exceptions of DNMT3a3 and
DNMT3a4 belonging to human and bovine, respectively PWWP, a
conserved  region containing  the core tetrapeptide of
‘proline-tryptophan-tryptophan-proline’.  ATRX homology, ATRX-like
Cys-rich region. The six conserved motifs are indicated by six colors,
respectively. The interaction regions between DNMT3a/l1 and DNMT3b/1
are given. Deleted regions of the isoforms of DNMT3b correspond to
exons 10, 22, and 23 of the transcripts.

embryo development, DNMT3b appears from the for-
mation of blastocyst and disappears after E9.5, then the
switch from DNMT3b to DNMT3a occurs [50],
suggesting that they are assigned distinct commitments in
different stages. For ES cell lines, both single and combi-
national mutation analysis of DNMT3a and DNMT3b
confirm that they are required and could compensate each
other to some extent [51]. In human, it exhibits an abun-
dant expression level for DNMT3a and very low level for
DNMT3b in most tissues other than testis, thyroid, and
bone marrow [36]. Overexpression of either DNMT3a or
DNMT3b, however, is associated with tumorigenesis or
carcinogenesis depending on cancer types [22,52], reflect-
ing to a certain extent that DNMT3a and DNMT3b have
their own unique functions or characteristics. It has been
shown that DNMT3a fulfills DNA methylation in a distri-
butive manner, wherecas DNMT3b does in a mode of
process [53] and that DNMT3a is inclined to methylate
major satellite in the pericentromeric region, whereas
DNMT3Db tends to methylate minor satellite in the centro-
meric region [51]. Furthermore, in vivo studies reveal that
the sequences of RCGY and the YCGR are preferentially
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methylated by DNMT3a and DNMT3b, respectively [54].
More recently, in vitro studies reveal that mouse DNMT3a
tends to methylate linker DNA between two nucleosomes
in the absence of H1 protein whereas DNMT3b shows the
activity of methylating DNA embedded in the nucleosome
core region [55]. Additionally, mutation of DNMT3b not
DNMT3a has correlation with immunodeficiency, centro-
meric instability and facial anomalies syndrome [56].
Reversely, it has been demonstrated that DNMT3a not
DNMT3b is responsible for the methylation of most
imprinted genes in the presence of DNMT3L [57].

Like DNMT1 variants, the isoforms of DNMT3a and
DNMT3b due to alternative splicing also play roles in
different stages of animal development and their forms
vary across species. DNMT3a2, transcribed from an intro-
nic promoter, features the loss of amino acid residues in
N-terminal [58]. However, it retains the ability to interact
with DNMT3L to achieve regional methylation, preferen-
tially for euchromatin [59]. DNMT3a3 is established in
human cells and characterized by the absence of catalytic
motifs and MTase activity. Western blot analysis confirms
that it is scarce during cell cycle, but is upregulated out of
cell cycle in testicular cells and fibroblasts [60]. DNMT3a4
has been isolated from bovine testis. It also lacks MTase
activity because of the loss of 67 amino acids in the central
coding region [43].

For DNMT3b2, it lacks part of amino acids between
regions of PWWP and Cys-rich coincident with exon 10.
However, its de novo MTase activity is hardly impaired
compared with that of DNMT3b1 [61]. Furthermore, it is
detected predominantly in mouse male gonocytes, in which
switch from DNMT3bl to DNMT3b2 occurs [62]. The
substitution of DNMT3b2, DNMTlo, and DNMT3a2 in
gametes or embryos for their major isoforms DNMT3bl,
DNMT1s, and DNMT3a, respectively, raises a question of
whether they may conform to the same or similar regulat-
ory mechanism. Besides having the same defect as
DNMT3b2, DNMT3b3 also affords the loss of key regions
corresponding to exons 22 and 23 [61], becoming unable
to methylate DNA. However, it is shown that in in vitro
system human DNMT3b3 has almost the same ability to
fulfill de novo methylation as DNMT3bl1 [63]. Notably, it
presumably acts as a regulator for DNA methylation [64].
Together, DNMT3b3 may exert its function either alone
less efficiently or in cooperation with other DNMTs more
efficiently. The remaining of the isoforms appears to be
catalytically inactive due to the disruption of regions
coincident with exon 22 or 23 [61]. DNMT3b4 and
DNMT3Db5 transcripts also have the same deficiency in
exon 11 as DNMT3b2 and DNMT3b3. Moreover, the
former has no exon 22 and the latter no exon 23. Both
DNMT3b4 and DNMT3b5 have a low expression in the
analyzed cell lines and normal human tissues except testes
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[64]. When translated, both are truncated motifs IX and X
due to the distinctive premature stop codons [65]. It has
been reported that DNMT3b4 might be a potential contri-
butor to hepatocarcinogenesis, for its upregulation could
cause hypomethylation of pericentromeric satellite regions
possibly via competing with DNMT3b3 for targeting to the
region, during which DNMT3b3 plays an opposite role
[66]. However, an opposite result shows that DNMT3b4 is
correlated with hypermethylation of promoter region of
RASSF1A gene in human lung cancer cells [67]. More
studies are needed to elucidate their exact roles. DNMT3b6
transcript was first isolated from ES cells, and it retains
exon 11 when compared with DNMT3b3 transcript [65].
A recent study reports the correlation of polymorphism of
DNMT3b6 gene with DNA methylation, suggesting that
DNMT3b6 may associate with gene transcription [68]. In
mouse ES cells, another two transcripts, DNMT3b7 and
DNMT3b8, have been discovered. Like DNMT3b6, they
keep exon 11 integrated. Yet, they have no exons 22 and
23, respectively [64]. As for human DNMT3b7, it has been
established to be an aberrant transcript involved in abnor-
mal DNA methylation profiles of cancer cells [69]. Their
translated products require further study. For bovine, four
isoforms of DNMT3b have been obtained, corresponding
to human DNMT3bl, DNMT3b3, DNMT3b4, and
DNMT3b5 [43].

The last member is DNMT3L which is produced during
gametogenesis. It just possesses ATRX homology region
in the N-terminal, and loses the key catalytic domains in
the C-terminal, exhibiting neither DNA-binding ability nor
MTase activity. Whereas it serves as a regulator for
DNMT3a, DNMT3b, and their isoforms by binding
together to induce DNA methylation and improve MTase
activity by approximately 1.3—4 folds [70,71]. Moreover, it
is indispensable for the establishment of maternally
imprinted genes, for its deletion can lead to biallelic
expression of normally maternally imprinted genes without
disruption of global methylation level [72]. In addition, it
can be attached to HDAC to induce de novo methylation
via interaction of its zinc finger within the ATRX domain
with histone H3 tails, which are unmethylated at Lys4
[73].

Lastly, strictly speaking, DNMT1 and DNMT3 cannot
be functionally divided, for they have overlapping func-
tions. As early as 1992, DNMT1 was first reported to
possess the de novo methylation activity in the absence of
Cys-rich region in vitro [74], suggesting a connection
between DNMT1 and DNMT3 and a structural foundation
for DNMT1 to possess de novo MTase activities. Given
that DNMT3a/3b also have such a structure, Cys-rich
region can be considered as a dual controller, not only con-
fining de novo MTase activity of DNMT3a/3b within a
regulable range, but also conferring de novo MTase activity

on DNMTI in the given circumstances. Another exper-
iment shows that DNMT1 does play a role both in main-
tenance and in de novo methylation [75]. Furthermore, a
study confirms cooperation among DNMT1, DNMT3a,
and DNMT3b in maintenance of DNA methylation [76].
Taken together, their names fail to live up to their func-
tions. It is noteworthy that cooperation among DNMTs
also exists in carcinogenesis, although their expressions
differ in various cancers [77,78]. The extent to which they
are involved in cancer remains to be investigated.

DNA Methyl-binding Proteins

Now that a huge amount of inheritable information is
stored in DNA methylation sequences, who act as the
interpreters and how to read them out are other big chal-
lenges for researchers. Some interpreters have been ident-
ified during the past decades, including MeCP1, MeCP2,
MBD1, MBD2, MBD3, MBD4, together with Kaiso [79]
(Fig. 3). All these proteins except MBD3 have the
common property of binding to methylated DNA [80]. In
addition, their genomic localizations in four mammals were
shown in Table 2. Here are the general descriptions of
these proteins.

MeCP1, a protein complex, includes MBD2 and chro-
matin remodeling complex NuRD/Mi2 containing HDAC1/
2, RbAp46/48 and other proteins, in which MBD2 is
responsible for preferentially targeting to methylated
nucleosomal DNA [81]. Traditionally, it was regarded that
MBDI1 belonged to the MeCP1 complex [82]. However,

MBD2
MeCP1 NuRD/Mi2 #
(complex)
MBD TRD
MeCP2 (N | G| )
MBD CxxC CxxC TRD
MBD1 C T Ty o W)
CxxC
GR repeat MBD
MBD2 C 1T )
TRD
MBD E repeat
MBD3 i i
MBD DMNA glycosylase domain
mBD4 =s
POZ/BTB Zinc finger
Kaiso (L 1 CIC O] )

Figure 3 Maps of methyl-binding proteins NuRD/Mi2 is a complex.
MBD, methyl-binding domain; TRD, transcriptional repression domain;
CxxC, cysteine-rich domain; GR repeat, glycine and arginine repeat; E
repeat, glutamate repeat. All of them except MBD3 have the ability to
bind methylated DNA. POZ/BTB, Pox virus and zinc finger/bric-a-brac
tramtrack broad complex (POZ/BTB) motif. Gray indicates the inability of
MBD3 to bind methylated DNA. Kaiso recognizes methylated DNA via
zinc finger instead of MBD.
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Table 2 Genomic localizations of methyl-binding proteins in four different species of mammals

Species MeCP2 MBDI1 MBD2 MBD3 MBD4 Kaiso
Homo sapiens Xq28 18q21 18921 19p13.3 3q21-q22 Xq23

Mus musculus XA73 18E2 18E2 10C1 6E3 XA3.3
Rattus norvegicus Xq37 18q12.2 18q12.1 Not placed 4q42 Xqll

Bos taurus X 24 Not placed 7 22 Not placed

this point of view seems not to hold water [83]. Hence,
more studies are in demand for resolving the controversy.

MeCP2, regarded as the founding member of MBD
family proteins, holds two important domains: methyl-
binding domain (MBD), in which there exists an Asx-ST
motif that can directly interact with DNA and
transcriptional-repression domain (TRD) [84]. Evidence
shows that both MeCP2 and MBDI1/2 have their own
unique methylated DNA-binding regions. The methyl-CpG
flanked by A/T bases ([A/T] > 4) is required for targeting
of MeCP2, whereas this rule is not suitable for binding of
MBDI1 or MBD2 [85]. Additionally, MeCP2 is involved in
DNA maintenance methylation in the complex with
DNMT]1 [86]. Through comparison with MeCP1, it shows,
on the one hand, MeCP2 binds to methylated DNA more
strongly than MeCP1, leading to more stability for gene
silencing. On the other hand, densely methylated CpG sites
and a single one is needed for targeting of MeCP1 and
MeCP2, respectively [83]. It is noteworthy that mutations
of MeCP2 are associated with Rett syndrome, which is
regarded as one of the most common causes of mental
retardation in females and characterized by a progressive
neurological impairment [87]. The possible reason is the
overexpression of four neural development-related 1D
genes due to disruption of MeCP2 according to the recent
study [88].

MBDI can be dissected into three key domains: MBD, a
Cys-rich domain (CxxC, including CxxCl, CxxC2, and
CxxC3), and the C-terminal TRD. MBD and CxxC3 have
the ability to bind methylated and unmethylated DNAs
respectively, and TRD can actively function at a distance
when MBD interacts with DNA during gene inhibition
[89]. A dynamic molecular mechanism of interaction of
MBD1 with DNA has been advanced [90]. So far, there
emerge at least four isoforms: MBDIvl, MBDI1v2,
MBD1v3, and MBD1v4 [91].

MBD2 closely resembles MBD3 among MBDs and
owns an additional 140 amino acid-long N-terminus com-
pared with MBD3. It can assemble into NuRD/Mi2-like
complexes and further form MeCP1 with other proteins
[92]. It has been demonstrated that MBD2 is involved in
the repression of some tumor suppressor genes in tumor
development and growth [93]. However, most recently, it is
found that MBD2 is the only methyl-binding protein
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responsible for high expression of human telomerase
reverse transcriptase in hTERT-positive cancer lines [94].
Also, MBD2 has been reported to demethylate such
methylated gene promoter as SV40 and GL2T, resulting in
their activation [95], which suggests that MBD2 may be
employed as a potential target for cancer therapy.

MBD3 is special, for it loses the capability of binding to
methylated DNA due to insertion of two amino acids, His30
and Phe34, into the MBD domain. However, as a component
of NuRD/Mi2 complex, MBD3 has the ability to combine
with HDAC1 and MTA2 by MBD domain [80]. Although
being unable to directly contact with DNA, the NuRD/
Mi2-MBD3 complex still has the ability to participate in
gene suppression as an important indirect mediator. One
possible way is that NuRD/Mi2-MBD?3 complex is recruited
to DNA by some specific DNA-binding proteins [96].
Additionally, it has been found that MBD3 is indispensable
for proper differentiation of pluripotent stem cells [97].
Similar to MBD2, another surprising study showed that
overexpression of MBD3 can also play a role in global
demethylation [98], suggesting that MBD3 acts as a bipartite
participator both in methylation and in demethylation.

MBD4, also designated as MED1 and identified using a
yeast two-hybrid system, is homologous to bacterial DNA
repair glycosylases/lyases and responsible for correcting
mutations at methylated CpG sites with its endonuclease
activity and maintaining genomic stability [99]. Once it is
deficient, CpG mutability accumulates, accompanied by the
tumorigenesis [100]. Hence, MBD4 can be considered as a
potential candidate as a tumor suppressor gene.

The last one is a novel methyl-binding protein, named
Kaiso. It has the ability to bind at least two symmetrically
methylated CpG sites, preferably in the context of
5'-CGCG-3’ [101]. Furthermore, it can bind non-
methylated DNA sequence TNGCAGGA, although having
an affinity 1000-fold lower than that to methylated regions
[8]. Evidence shows that it is a global repressor of methyl-
ated genes and necessary for early embryo development
[102]. More details on Kaiso remain to be elucidated.

Collectively, in terms of genomic structure and chromo-
some location, it could be inferred that MBD2 and MBD3
share a relatively recent ancestor, MBD2/3, found in invert-
ebrate, whereas other MBDs diverge at a relatively distant
period. For DNA MBD, it is presumably regarded from a
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TAM protein based on their common abilities to bind
DNA and co-existence in numerous animal genomes [103].
All of these methyl-binding proteins build a bridge con-
necting DNA methylation with gene repression, tumor, as
well as DNA repair directly or indirectly.

Perspectives

How much information can be stored in the epigenetically
modified DNA on earth? Although, up-to-date, a substantial
body of information has been revealed, we are convinced
that our understanding of DNA methylation is just a tip of
iceberg. More DNA MTases, methyl-binding proteins, and
their isoforms may be identified in the future among mam-
malian species and continuously produced possibly by
RNA selective splicing under normal and abnormal con-
ditions. Furthermore, their diverse functions remain to be
investigated. For instance, a recent study shows that MeCP2
plays roles not only in binding methylated DNA, but also in
regulating RNA splicing [104]. Hence, more delicate net-
works regulating DNA methylation deserve explorations.
For the whole genome, given that not all the CpG sites are
functional, some interact with methyl-binding proteins, and
others just indicate for them like street signs for travelers,
still others do nothing. What are the exact recognition mech-
anisms involving methyl-binding proteins work is still the
focuses for future research. Meanwhile, more studies are
needed to investigate the relationship among DNMTs,
methyl-binding proteins, tumor/cancer, and development to
provide more valuable insights into the epigenetic mechan-
isms during tumorigenesis/carcinogenesis and embryogen-
esis/ontogenesis. However, one thing is certain: there is still
a long way to go for further analysis of diverse functions of
DNA methylation regulators and related complicated mech-
anisms. Fortunately, the rapidly developing DNA
methylation-related technologies will make it possible to
uncover these mysteries in the future.
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