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Protein Secondary Structure Prediction Using Dynamic Programming
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Abstract        In the present paper, we describe how a directed graph was constructed and then searched for
the optimum path using a dynamic programming approach, based on the secondary structure propensity of
the protein short sequence derived from a training data set. The protein secondary structure was thus pre-
dicted in this way. The average three-state accuracy of the algorithm used was 76.70%.
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Protein structure prediction helps to facilitate our un-
derstanding of the protein function. It is commonly reco-
gnized that the 3-D structure of a protein can be accu-
rately predicted when the prediction accuracy of the se-
condary structure reaches 80.00%. The prediction of the
secondary structure using the primary structure is the main
obstacle when predicting the 3-D structure of a protein.
When predicting the secondary structure, the three-state
accuracy Q3 is used as a criterion to assess the prediction
accuracy,

(1)

where Nα, Nβ and Nc are respectively the number of resi-
dues in α-helix, β-sheet and other types predicted
correctly, and N is the total number of amino acid resi-
dues predicted.

A number of computational methods have been deve-
loped for predicting the protein secondary structure, such
as information theory methods, the nearest-neighbor
method and the artificial neural network method. Infor-
mation theory methods are based on the statistical charac-
teristics of a single amino acid’s propensity for a given

conformational state. Examples of such methods include
GOR1 [1], GOR3 [2], GORIV [3], and DSC [4]. Their Q3
values are about 69.50%. Zvelebil et al. [5] used the align-
ment of homologous sequences and got a Q3 value of 66.00%.
The nearest-neighbor method is based on the conforma-
tional states of the best matches or nearest neighbors. An
example of such a method is PREDATOR [6], whose Q3
is about 68.00%. Yi and Lander’s algorithm [8], NNSSP
[9] and PHD [10] are based on artificial neural networks.
The highest Q3 of these artificial neural network methods
is 74.00%. Recently, Ward et al. [11] used support vector
machines and got a Q3 value of 77.07%. Recent researches
in this area have been mainly focused on the incorporation
of existing methods to improve the prediction accuracy.

In the present paper, we introduce a novel method for
the secondary structure prediction of a protein.

Analysis of Short Peptide Propensity

First, we downloaded all the 24,310 protein sequences
and their secondary structure parameters from the DSSP
(Database of Secondary Structure in Proteins, http://www.
sander.ebi.ac.uk/dssp/)  and NLR-3D [the Sequence-struc-
ture Database produced from sequence and annotation
information extracted from three-dimensional structures
in the Protein Databank (PDB), http://pir.georgetown.edu/
pirwww/dbinfo/nrl3d.html]. Then we deleted the redun-
dant and inferior sequences according to the following
rules: (1) omit the homologous sequences; (2) delete those
sequences with the wrong secondary structure notation;
and (3) delete those sequences designated to be of low
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quality by PROCHECK which checks the stereochemical
quality of a protein structure (http://www.biochem.ucl.
ac.uk/~roman/procheck/procheck.html) [6]. This process
resulted in a set of 5100 sequences with high quality an-
notation in the secondary structure that was used for the
short peptide propensity analysis.

The short peptides were divided into 10 secondary struc-
ture classes: (1) connecting peptides between α-helix and
α-helix, denoted by αα; (2) connecting peptides between
α-helix and β-sheet, denoted by αβ; (3) connecting pep-
tides between β-sheet and β-sheet, denoted by ββ; (4)
connecting peptides between β-sheet and α-helix, denoted
by βα; (5) beginning peptides of α-helix, denoted by αB;
(6) beginning peptides of β-sheet, denoted by βB;  (7) ter-
minal peptides of α-helix, denoted by αE; (8) terminal pep-
tides of β-sheet, denoted by βE; (9) α-helical peptides,
denoted by α; and (10) β-sheet peptides, denoted by β.

All the peptides of the 5100 sequences make up set Ω.
Those peptides belonging to αα, αβ, ββ, βα, αB, βB, αE,
βE, α and β, respectively, comprise subset Ωi, i=0, 1,…, 9. The
number of peptides in each secondary structure class is
listed in Table 1.

Let N(w,Ωi) be the occurrence frequency of peptide w
in set Ωi. The secondary structure propensity coefficient
(SSPC) P(w,Ωi) is then defined by,

(2)

The peptide conflict rate is defined as the percentage of
peptides that belong to two or more secondary structure
classes (αα, αβ, ββ, βα, αB, βB, αE, βE, α, β) in the total
number of peptides. Through statistical analysis, we found
that when the length of the peptide L is 4 amino acids, the
conflict rate is too high and the secondary structure pro-
pensity is too low to be used in the prediction of the sec-
ondary structure. Statistical analysis results also show that
L=5 amino acids is the best peptide length for the propen-
sity analysis.

Construction of the Directed Graph

For a protein sequence X=x0x1
…xN−1, where N is the

length of the sequence, the short peptide w[j] of length L
for position j is defined as follows:

w[j]=xjxj+1
...xj+L−1       j=0, 1,…, N–L

The SSPC of w[j] is denoted by P(w[j],Ωi) (i=0, 1,…, 9).
The SSPCs of sequence X make up the matrix P(X) of
10×(N–L+1):

(3)

When the propensity coefficient of αα P(w[j],Ω0)>0,
the short peptide in position j is probably a connecting
peptide of αα. This αα peptide is equivalent to a terminal
peptide of αE in position j–1 and a beginning peptide of
αB in position j+1. So the propensity coefficients of αE
in  j–1 and αB in j+1 are both equal to P(w[j],Ω0).
Therefore, for simplification, the propensity coefficients
of αα can be included in the propensity coefficients of αB
and αE by modifying the propensity coefficients of αE and
αB as follows:

P(w[j−1],Ω6)=max{P(w[j],Ω0),P(w[j−1],Ω6)}
P(w[j+1],Ω4)=max{P(w[j],Ω0),P(w[j+1],Ω4)}

Similarly, the propensity coefficients of αβ can be in-
cluded in the propensity coefficients of αE and βB by modi-
fying the propensity coefficients of αE and βB as follows:

P(w[j−1],Ω6)=max{P(w[j],Ω1),P(w[j−1],Ω6)}
P(w[j+1],Ω5)=max{P(w[j],Ω1),P(w[j+1],Ω5)}

The propensity coefficients of ββ can be included in
the propensity coefficients of βE and βB by modifying the
propensity coefficients of αE and βB as follows:

P(w[j−1],Ω7)=max{P(w[j],Ω2),P(w[j−1],Ω7)}
P(w[j+1],Ω5)=max{P(w[j],Ω2),P(w[j+1],Ω5)}

The propensity coefficients of βα can be included in
the propensity coefficients of βE and αB by modifying the
propensity coefficients of αE and βB as follows:

P(w[j−1],Ω7)=max{P(w[j],Ω3),P(w[j−1],Ω7)}
P(w[j+1],Ω4)=max{P(w[j],Ω3),P(w[j+1],Ω4)}

Table 1        The number of peptides in each secondary structure class

Ω0(αα) Ω1(αβ) Ω2(ββ) Ω3(βα) Ω4(αB) Ω5(βB) Ω6(αE) Ω7(βE) Ω8(α) Ω9(β) Ω

10,785 15,247 16,397 15,950 28,843 35,409 28,802 35,423 797,536 282,152 1,666,006
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The propensity coefficient P(w[j],Ω4) of αB in position
j means that the probability of occurrence of the second-
ary structure αB in position j is P(w[j],Ω4). In addition,
when the propensity coefficients of the α peptide in posi-
tion j, j+1 and j+2 are high, the credibility of the second-
ary structure αB in position j increases; otherwise, it
decreases. Therefore, the credibility of αB is defined as:

S(j,αB)=P(w[j],Ω4)[1+(P(w[j],Ω8)+P(w[j+1],Ω8)
   +P(w[j+2],Ω8))/3]

The credibility of βB is defined in the same way:

S(j,βB)=P(w[j],Ω5)[1+(P(w[j],Ω9)+P(w[j+1],Ω9)
         +P(w[j+2],Ω9))/3]

The propensity coefficient P(w[j],Ω6) of αE in position
j means that the probability of occurrence of the secon-
dary structure αE in position j is P(w[j],Ω6). Additionally,
when the propensity coefficients of the α peptide in posi-
tions j, j−1 and j−2 are high, the credibility of the secon-
dary structure αE in position j increases; otherwise, it
decreases. Therefore, the credibility of αE is defined as:

S(j,αE)=P(w[j],Ω6)[1+(P(w[j],Ω8)+P(w[j−1],Ω8)
  +P(w[j−2],Ω8))/3]

and the credibility of βE is defined similarly as:

S(j,βE)=P(w[j],Ω7)[1+(P(w[j],Ω9)+P(w[j−1],Ω9)
  +P(w[j−2],Ω9))/3]

Therefore, the protein sequence X=x0x1
…xN–1 corre-

sponds to a matrix S(X):

(4)

Finally, a directed graph G is constructed from S(X) as
follows.

(1) The vertex set {node(j), j=1, 2,…, k} is composed
of k vertices.

A vertex in a directed graph G is defined as the linking
region between two secondary structures. Its data struc-
ture is:

node(j){float αEscore, βEscore, αBscore, βBscore; int
αEposition, βEposition, αBposition, βBposition, position}

where αEscore, βEscore, αBscore and βBscore are the re-
spective credibility scores of αE, βE, αB and βB of node(j);
αEposition, βEposition, αBposition and βBposition are the
respective positions of αE, βE, αB and βB; and position is

the position of the vertex node(j) in X. If there are k ver-
tices in S(X), then the parameters of node(j), j=1, 2,…, k
are calculated as follows:

node(j).αEscore=S(i1
*,αE); node(j). αE position=i1

*

where i1
* satisfies:

S(i1
*,αE)=max{S(i,αE),position[j−1]<i<position[j]}

node(j). βEscore=S(i2
*,βE); node(j). βEposition=i2

*

where i2
* satisfies:

S(i2
*,βE)=max{S(i,βE),position[j−1]<i<position[j]}

node(j). αBscore=S(i3
*,αB); node(j). αBposition=i3

*

where i3
* satisfies:

S(i3
*,αB)=max{S(i,αB),position[j]<i<position[j+1]}

node(j). βBscore=S(i4
*,βB); node(j). βBposition=i4

*

where i4
* satisfies:

S(i4
*,βB)=max{S(i,βB),position[j]<i<position[j+1]}

where j=1, 2, ..., k, and assuming position[0]=0, position
[k+1]=N−L.

(2) The weights of the directed arc from node(i) to
node(j) represent the secondary structure propensity from
node(i) to node(j) in G, where i<j. These are defined re-
spectively as:

≤ ≤ (5)

≤ ≤ (6)
where the denominator j–i represents the penalty for the
leaping over the vertices between node(j) and node(i).

From the definitions above, the graph G with k nodes
for secondary structure prediction is presented as the fol-
lowing matrix:

 (7)
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Every element (from the second element onward) in
the first row represents the weight of the α structure from
the first vertex to other vertices, and every element (from
the second element onward) in the first column repre-
sents the weight of the β structure from the first vertex to
other vertices. Similarly, every element (from the third
element onward) in the second row represents the weight
of the α structure from the second vertex to other vertices,
and every element (from the third element downward) in
the second column represents the weight of the β struc-
ture from the second vertex to other vertices. The rest of
the elements can be similarly explained. For example, a
directed graph G with four vertices is shown in Fig. 1.

average weights of all the directed arcs along this path.
From this definition, the optimum path from the initial vertex
to the terminal vertex of graph G—namely the path with
the highest w(Path(1,k))—represents the optimum solu-
tion of the secondary structure prediction, corresponding
to the solution with the highest mean credibility.

For graph G with k vertices, there exist 2kk! paths from
the initial vertex to the terminal vertex. The task of the
protein secondary structure prediction becomes trans-
formed into one of finding an optimum path, namely Path*,
which maximizes the w(Path*) in the 2kk! paths. This task
has exponential computational complexity. Such a chal-
lenge can be overcome efficiently by a dynamic program-
ming approach (DPA).

Computing the optimum path by a dynamic program-
ming approach is based on the optimum principle:

If Path*(1, i) is the optimum path from the initial vertex
node(1) to the ith vertex of graph G and E*(i, j) is the opti-
mum directed arc from node(i) to node(j), with j∈{i+1,
i+2,…, k}, then

Path (1,j)=Path (1,i)fE (i,j)

is the optimum path from the initial vertex node(1) to node
(j).

Based on this principle, when computing the optimum
path from the initial vertex node(1) to node(j), the opti-
mum paths from node(1) to the senior vertices of node(j)
should be computed in advance. Therefore, we may begin
from the initial vertex node(1), and compute the optimum
path from senior vertices to junior vertices.

Three parameters of node(j) are defined as follows:
v(j): score of node(j), v(j)=max{ω(Path(1, j))}, re-
presenting the weight of the optimum path from the initial
vertex to node(j);
b(j): number of arcs in the optimum path from the initial
vertex node(1) to node(j);
U(j): ordered array composed of the vertex code and struc-
ture types, representing the optimum path from node(1)
to node(j), where j=1, 2,…, k, and v(1)=0, b(1)=0, U(1)
={1}.

Two parameters for the directed arc from node(i) to
node(j) are defined as follows:
ωx(i, j ): weights of the optimum directed arc from node(i)
to node(j); ωx(i, j)=max{ωα(i, j), ωβ(i, j)};
B(i, j): structure types of the optimum directed arc from
node(i) to node(j); if ωx(i, j)=ωα(i, j), then B(i, j)=α,
otherwise B(i, j)=β, where 1≤i<j≤k.

The dynamic programming algorithm that searches for
the optimum path is described in detail as follows:
Step 1: for 1≤i<j≤k, calculate ωx(i, j) and B(i, j):

Fig. 1        The directed graph with four vertices for the protein
secondary structure prediction

Searching for the Optimum Path

Utilizing the directed graph G with k vertices defined
above, the secondary structure of the corresponding pro-
tein can be predicted. In graph G, a single directed path
from the initial vertex to the terminal vertex represents
one solution of the secondary structure prediction.

Let Ex(ip, ip+1) represent the directed arc from node(ip)
to node(ip+1) connected by structure x (x=α or β). The
symbol “f” is used to denote the junction between two
arcs. Therefore, Path(i,j), which is the path composed of
z arcs from node(i) to node(j), is denoted as:

Path(i, j)=Ex(i, i1)fEx(i1, i2)fEx(i2, i3)f…fEx(iz–1, j),
i<i1<i2<i3<…<iz–1<iz =j

The weight of the path is defined as:

ω(Path(i, j))=[ωx(i, i1)+ωx(i1, i2)+…+ωx(iz–1, j)]/z

This means the weight of Path(i, j) is defined as the
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ωx(i, j)=max{ωα(i, j), ωβ(i, j)}

if ωx(i, j)=ωα(i, j), then

B(i, j)=α, otherwise B(i, j)=β.

Step 2: let v(1)=0, b(1)=0, U(1)={1};
Step 3: for each j=2, 3,…, k, compute v(j), b(j) and U(j)
successively:

(1) If there exists only one p  such that

then

b(j)=b(p )+1

Add B(p , j) and j orderly to the end of set U(p ), and
obtain U(j).

(2) If there exist p1, p2, …, pk, such that 1≤p1<p2<...
<pk≤ j−1, and

=...=

=v(j)

then

b(j)=b(pk)+1

Add B(pk, j) and j orderly to the end of set U(p2), and
obtain U(j) (the weight of the vicinity vertex is preferential).

Finally, we obtain v(k), which is the weight of the opti-
mum path from the initial vertex to the terminal vertex,
and U(k), which is the corresponding trial optimum path.

For example, the optimum path in Fig. 2 is 1-β-2-α-3-α-4,
which means the β structure is predicted from node(1) to node
(2), and the α structure is predicted from node(2) to node
(4).

Table 2        Q3 comparison of the prediction results in Test 1

Case Sequence number Residue number GOR3 Q3 (%) PHD Q3 (%) DPA Q3 (%)

All α   23    3247 64.7 83.10 80.53
All β   10    1092 48.6 73.96 75.60
α+β & α/β   40    9955 57.9 76.15 76.46
Others   57 10,143 57.7 72.67 75.93
Total 130 24,437 58.3 75.69 76.70

Fig. 2        Weighted direction graph with four nodes for
protein secondary structure prediction

Results and Discussion

The data from 130 low-homologous proteins selected
by Rost and Sander [10] were used to test the algorithm
described here.

In Test 1, we divided the data into four groups, namely
α, β, α+β & α/β and others, and predicted the protein
secondary structure with GOR3, PHD and the DPA intro-
duced in this paper. The Q3 values of these methods are
compared in Table 2. We can see that DPA performed
better than GOR3 and PHD in almost every case in Test 1.

Test 2 was carried out to further investigate the perfor-
mance of DPA. In Test 2, we partitioned the sequences
into two subsets, Set I and Set II. Set I contains those
sequences of which more than 90% are longer than 5 amino
acids, while Set II contains the remaining sequences. The
prediction results are listed in Table 3.

From Table 2, we can see that the performance of DPA
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for Set I is much better than that of GOR3 and PHD,
while the results for Set II show no significant difference
between DPA and PHD. This is because DPA’s SSPC da-
tabase omits those peptides whose lengths are less than 5
amino acids. Fortunately, Set II only contains a small num-
ber of sequences.

Conclusion

DPA can overcome the shortcomings of the methods
based on a single amino acid’s propensity because it utilizes
SSPC, and it is faster because of the dynamic program-
ming algorithm. DPA will perform even better if combined
with other methods.
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Table 3        Q3 comparison of the prediction results in Test 2
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