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Predicting Polymerase II Core Promoters by Cooperating Transcription Factor
Binding Sites in Eukaryotic Genes
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Abstract        Several discriminate functions for predicting core promoters that based on the potential
cooperation between transcription factor binding sites (TFBSs) are discussed. It is demonstrated that the
promoter predicting accuracy is improved when the cooperation among TFBSs is taken into consideration.
The core promoter region of a newly discovered gene CKLFSF1 is predicted to locate more than 1.5 kb far
away from the 5' end of the transcript and in the last intron of its upstream gene, which is experimentally
confirmed later. The core promoters of 3402 human RefSeq sequences, obtained by extending the mRNAs in
human genome sequences, are predicted by our algorithm, and there are about 60% of the predicted core
promoters locating within the ± 500 bp region relative to the annotated transcription start site.
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In the transcription stage of genes, various proteins bind
to promoters—the transcriptional regulatory regions
in genome. The main part of a promoter consists of many
short sequence elements, TFBSs, with positive or nega-
tive effects on the transcription initiation [1]. Within this
region, there is a core promoter defined by a minimal DNA
element that is necessary and sufficient for transcription
initiated by RNA polymerase II [2]. It is generally under-
stood that the core promoter is the flank region of the
transcription start site (TSS) [3]. This is always true for
prokaryotes. With regard to eukaryotes, such as the homo
sapience, it has been noted that the transcription regula-
tion is much more sophisticated [4]. It is suggested that
the “transcription machine” may not locate near the TSS
and the DNA tertiary structure may play a role in the
transcription regulation [5]. Consequently, the problem of
the promoter identification may be different from that of
the identification of the TSS [6].

From the evolutionary point of view, the TFBSs in core
promoters should be conservative. During evolution,

recombination and mutation frequently occur on the
chromosomes, and only those changes keeping the neces-
sary elements for survival can be observed in the present
organs. Thus most of the segments in promoters that
are necessary for transcription initiation should have
a statistically significant conservation. In fact, Fickett et
al. [7] pointed out: “TFBSs stand out clearly against a
non-conserved background”. Prestridge [8] first charac-
terized eukaryotic promoters in terms of the density
of TFBSs. There are several other attempts in this ap-
proach (see [9]), but one drawback of these methods is the
large number of false positives. As a good alternative at
present, PromoterInspector [10] makes use of pairs of
IUPAC (International Union of Pure and Applied
Chemistry) words with some distance and predicts
promoters at a high specificity of several thousand base
pairs per false positive with sensitivity rate of about 50%
[11]. FirstEF makes use of the 5-tuple and 6-tuple around
TSS, the donor information and the CpG-island
information, and predicts 86% of the first exons with 17%
false positives [11]. But these algorithms focusing on TSS
identification are of limited use for biologists who are
interested in the transcriptional regulation but not the
accurate TSS.

On the other hand, Wagner [12] initiated the study of
the cooperation between TFBSs and pointed out that the
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transcription of many eukaryotic genes is co-regulated
by transcription factors. Fickett et al. [7] showed that
the co-binding site for the transcription factors is conser-
vative among species. Besides, the example of HNF1 [13]
strongly supports the cooperation between TFBSs.

Here, we provide an improved approach in terms of
TFBS pairs to raise the signal-noise ratio for identifying
core promoters. Our result supports the cooperation be-
tween TFBSs in core promoter sequences and demonstrates
that the predicting accuracy is significantly improved by
using TFBS pairs. Moreover, using the distance between
TFBS pairs also helps to improve the predicting accuracy.
Finally, we also report an interesting experimental result
that the promoter of a gene discovered by Xu [14] is pre-
dicted locating in the last intron of its upstream gene by
our program, which is confirmed later by wet experiment.

Materials and Methods

Data

The datasets in our experiments include 1300 TFBSs
(with length from 5 to 12 bp) from TRANSFAC3.5 [15]
and 575 vertebrate promoter sequences (except retro-
viruses) extracted from the EPD50 [16]. For consistency,
each promoter sequence is cut from –250 to 50 bp, where
TSS is at position +1. The entries with less than 40 bp
upstream or 5 bp downstream are discarded with 565
entries left. The non-promoter data are the 890 human
coding sequences in the 1998 GENIE multiple exon gene
dataset. The genomic data in Fickett et al. [9] and the
genomic data HMR195 [17] with complete genes are used
for testing the performance of our algorithm on genomic
sequence. The dataset COMPEL2.4 [18] is used for ex-
plaining the biological significance of TFBS pairs selected
in our dictionary. The complete genomic sequences of 3402
mRNAs in human RefSeq are obtained by extending them
in the human genome sequences to perform our program.

Algorithm description

From a linguistic point of view, we take core promoter
sequences as sentences written on a random text back-
ground composed of A, C, G, and T, while the words are
the TFBSs. One difficulty here is that there are many words
shared in promoters and other DNA segments such as
introns due to random chance. A reasonable assumption
is that many genes have similar TFBS modules and the
statistical features of these modules will stand out from
the random background. Our approach is as following. First

we try the single TFBS scoring system (SSS). The k-tuple
(4 < k < 13) over-represented in promoters while under-
represented in coding regions are considered (we do not
consider the introns, because introns and promoters are
functionally interchangeable in some cases (see “Promoter
identification in gene sequences with known ATG”), and
it will be demonstrated that the over-represented tuples
(which are called “keywords” following the linguistics)
in promoter region are mostly TFBSs (see “Keyword
analysis”). We pick up TFBSs to build a keyword dic-
tionary (WD) from the database TRANSFAC3.5, by coun-
ting their appearing frequencies in both the promoter
and coding sequences, keeping those TFBSs that have
relatively high appearing frequencies in promoters. A score
s(w) is assigned to each keyword w in the dictionary. For
a given sequence S, we enumerate all the keywords w
appearing in it and take the sum [Formula (1)]
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=
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wsT )(                                                           (1)

as its promoter-like score. A suitable threshold is deter-
mined by the following statistical method. Let FNy be the
number of sample promoters in learning dataset that have
promoter-like score lower than y, and FPy be the number
of sample coding sequences in learning dataset with score
higher than y. The threshold x is taken as Formula (2)
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where #Prom and #CDS are the numbers of learning
sample promoters and coding sequences respectively. A
testing sequence will be accepted as a promoter if its score
is above the threshold and rejected if below. Secondly,
considering the cooperation between transcription factors,
we try the TFBS pair scoring system (PSS). The same
procedure as that for single TFBS is applied: a dictionary
of over-represented TFBS pairs, a scoring function, and a
threshold for TFBS pairs are set up. The result shows that
considering TFBS pairs do improve the predicting
accuracy. Then we try TFBS pair scoring system with
distance (PSSD). To analyze the distance between TFBSs,
we take the minimum non-overlapping distance between
TFBSs of each pair in sample promoter sequences for
statistics. Since there are not enough experimentally
verified sample promoter sequences and the transcription
factors may bind to various TFBSs, we cluster the TFBS
pairs first and assume that the distance between TFBS pairs
of a cluster is drawn from an identical and independent
distribution. We will show that the information of the
distance between TFBSs is useful for improving the pre-
dicting accuracy. Finally we take the PSSD as the discri-
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minate function for promoter identification. For a given
eukaryotic gene sequence with translation start site ATG
known, which could often be provided by EST (expressed
sequence tags) or RefSeq, we can predict promoters in the
upstream region of the translation start site by the scoring
systems given above.

Results

Keyword analysis

We count the number of k-tuple appearing in the TFBSs
dataset. A k-tuple is defined as TFBS-k-tuple if it is either
a TFBS itself or part of a TFBS in TRANSFAC 3.5. For
k = 5, 6, 7, and 8, the number of k-tuple (denoted by N)
and of TFBS-k-tuple (denoted by nt) are listed in Table 1.
Apparently, only 1/4 and 1/13, which is a small portion of
7-tuple and 8-tuple respectively, appear in the TFBS set.
This observation suggests that it would be better to take
TFBS-k-tuples as the candidates of keywords instead of
all k-tuples.

A detailed analysis of the k-tuple appearance distri-
bution also supports the above idea. Let N(x) be the num-
ber of 7-tuple that appears in x of the 565 sample promoter
sequences. The bar plot of N(x) along x is shown in Fig. 1.
We can see that the ratio of the number of TFBS-7-tuple to
7-tuple in promoter sequences increases as x increasing,
while it keeps almost the same for different x in random
sequences. The overall distributions of 7-tuple appearance
frequencies are similar for both promoter and random
sequences, except that the distribution for promoter
sequences has longer tail and larger N(x) for lower x
relative to that for random sequences. This indicates that
there are certain 7-tuples, which are mostly TFBSs, with
very high appearing frequencies, while some 7-tuples with
low appearing frequencies in promoter regions.

A simple model can be used to explain the behavior of
k-tuple frequency distribution in promoter sequences. This
distribution can be decomposed into three components:
(1) the background distribution, which is the contribution
of the k-tuple appearance in random sequences; (2) the
appearances of over-represented k-tuple; and (3) the
appearances of under-represented k-tuple. In Fig. 2, we
use the mixed model of three normal distributions (fran, for
and fur for random, over-represented and under-represented
frequency respectively) to fit the overall appearance dis-
tribution of the sample promoter data. Obviously the mixed
model Fprom is very well fit to the true overall distribution
Rprom. Meanwhile, the distribution of fran is quite similar to
the true background distribution Rran, acquired from the
statistics on random sequences.

The result of this model suggests that a promoter

k

5
6
7
8

N

1024
4096
16384
65536

nt

1011
3076
4895
4983

Table 1        Number of all k-tuples (N) and TFBS-k-tuples (nt)

Fig. 1        The distributions of 7-tuple frequencies in promoter sequences and random sequences
The vertical axis is the number of the tuple that has corresponding appearance frequency shown in the horizontal axis. The 7-tuple and TFBS-7-tuple frequencies in 565
promoter sequences and 565 random sequences were analyzed.
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sequence consists of some conservative (appearing more
frequently than by chance) and biologically significant
segments. These segments are a subset of keywords
(TFBS), while the sequences between them form a
random background. Therefore, we could conclude that
the weight matrices computed from the mixture of
random and conservative segments would bring in
considerable amount of noise for promoter identification.
It suggests that one way to amplify the signal carried
by those keywords is to skip the random segments
and make use of the TFBS. A keyword dictionary (WD)
with 619 TFBS (from 5 bp to 12 bp) is built as described
in section “Algorithm description”.

Promoter identification by single TFBS scoring
system (SSS)

By dividing the 565 promoter sequences and the
890 coding sequences into 60% and 40% as learning and
testing dataset randomly, we apply cross-validation test
for the single TFBS scoring system (SSS). Each keyword
w  in the WD is assigned a score [Formula (4)]
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where fp(w) and fnp(w) are the frequencies of keyword w
in promoter and non-promoter sequences in learning
dataset respectively. As described in section “Algorithm

description”, we obtain a threshold by optimizing the
FP (False Positive) and FN (False Negative) rate in
learning dataset. With the threshold, the testing sequences
are classified as promoters or non-promoter sequences
according to its score. Then we obtain the true positive
rate and true negative rate in test dataset. The cross-
validation procedure is repeated 9000 times. The average
of true positive rates and true negative rates in test data are
77.6% and 81.3% respectively.

Dependency of the TFBSs in over-represented pairs

In light of the knowledge of the cooperation among
TFBSs in transcription initiation, it is natural to consider
pair even triple of keywords. Since the currently available
sample promoters experimentally verified are very limited,
only pairs of keywords are considered here.

Totally there are 191,271 possible combinations from
the 619 words in our WD. To build the pair dictionary  (PD),
we select a pair if it appears more than four times in
promoter dataset and its appearance frequency in the
promoter dataset is four times higher than that in the
coding sequences as well. Then a PD including 3155 pairs
is built. We take the following D-score [Formula (5)] to
evaluate the dependency of the TFBSs w1 and w2 of each
pair (w1, w2) in PD, where f(w1,w2), f(w1) and f(w2)
are the frequencies of pair (w1,w2), word w1 and w2
respectively.

Fig. 2        Decomposition of frequency distribution [N(x)/47] of 7-tuple
The vertical axis is the percent of 7-tuple having corresponding appearing frequency x, indicated by the horizontal axis. Rran, distribution of 7-tuple in random
sequences; Rprom, 7-tuple distribution in promoters; Fprom, the sum of three component distributions fur, for, and fran; fur, weighted distribution of the under-represented 7-
tuple; for, weighted distribution of the over-represented 7-tuple; fran, weighted distribution of the background 7-tuple.
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Clustering the TFBS pairs

One transcription factor may bind to various sites. Hence
we group the TFBS pairs into clusters, which may be
bound by the same transcription factor pairs. We use the
Hamming distance of two TFBSs to group the 3155 pairs
in the last section. Totally 235 clusters are obtained. Among
them, 82 clusters (with 1551 pairs) are TATA-related and
16 clusters (with 297 pairs) have no TATA-box but are
CAAT-related. The remaining 137 clusters contain 1307
pairs that are mostly GC rich TFBSs. In Table 2, some
typical sequences of the clusters of TATA-CAAT pattern
and the corresponding numbers of their members are
listed. It can be seen that the complementary sequence of
CAAT-box, GATTGG, is also statistically significant. We
guess that it may be functionally similar to CAAT-box and
we consider it as CAAT-box.

It is interesting that some TFBS pairs we selected statis-
tically coincide with the experimentally selected co-
operative pairs by comparing our pairs with the FACTOR
table in TRANSFAC3.5. We find that 71% (2240 of the
3155) pairs in our PD have corresponding transcription
factor pairs with known cooperation. We also compared

our TFBS pairs with the database COMPEL2.4. Among
the 150 Composite regulatory Elements (CE) in
COMPEL2.4, 24 are found in our dictionary. 10 of the 24
CEs match with our TFBS pair very well and are listed
in Table 3. For example, the TFBS pair CTGGGTAAAAT
has its counterpart C00051. The sequence of C00051 is
CTGGGAAgat…aaATTAAATATTAAC, with the capital
letters representing the binding sites of transcription
factors IL-6 RE-BP and HNF-1 respectively.

We also find that there are some TFBS-triples over-rep-
resented in promoters relative to in coding sequences.
Among them, several TATA-box related triples are listed
in Table 4. But with the current limited promoter data, it is
impossible to make stable statistics since most of the triples
do not have appearing frequency high enough in such a
small dataset.
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Fig. 3        D-value of the 3155 pairs we selected
The vertical axis is the percentage of TFBS pairs that have the corresponding D-
value shown in the horizontal axis.

The distribution of the D-score of pairs in our dictio-
nary is shown in Fig. 3. Two TFBSs in a pair are consi-
dered to be independent if the D-score is 0. One can see
that the D-scores of a large part of pairs in PD are not
close to 0, which indicates that the TFBSs in the pairs in
PD are mostly dependent.

Counterpart in COMPEL24

C00051

C00096

C00132

C00041

C00046, C00045

C00045

C00051

C00045

C00083

TFBS pair

CTGGG -TAAAAT

TAAAT-TGACG

CCGCCCCC-CGCGG

ATAAATA - MAMAG

GCCCC-TAAAT

TATTT-TAAAT

TAAAT-CTGGG

TAAAT-CCTGC

GAGGA-TATAAA

Table 3         Some TFBS pairs in database COMPEL2.4 that also
presented in our dictionary

Center of cluster

CCAAT-TATAA

CCAAT-GGGCGG

ATTGAA-TATAA

GATTGG-TATAA

ATTGC-TATAAA

ATTGG-GGGCGG

GCAAT-TATAAA

Number of members

42

25

13

14

12

29

27

Table 2        TATA-CAAT pattern clusters
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Promoter Identification by TFBS pair scoring system
(PSS)

We also apply the same cross-validation procedure for
PSS as that for SSS. Each keyword pair is assigned a score
[Formula (6)]
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where fp(w1,w2) and fnp(w1,w2) represent the frequency
of TFBS pair (w1,w2) in learning promoter and non-
promoter sequences respectively. We perform the cross-
validation test 1000 times (less than 9000 times for sake
of saving time). The average true positive and true ne-
gative rates are 84.1% and 82.4% respectively. The result
comparing with that of single TFBS is summarized in
Table 5. We can see that considering the interaction
between TFBSs does improve the discrimination rate.
We then take the 565 promoter sequences and 890 coding
sequences as learning data and make use of the dictionary
with 3155 TFBS pairs obtained in “Dependency of the
TFBSs in the over-represented pairs”.

TFBS triple

TATAAA-CCAAT-GGCGG
TATAAA-CATTT-CCAAT
TATAAA-CATTT-CAGAG
TATAAA-CCAAT-TCTCC
TATAAA-CATTT-AAGGAA
TATAAA-CCAAT-GGGCA

In prom

18
19
18
16
13
12

In cds

0
1
3
1
0
0

Table 4        Appear time of some TATA related TFBS triples
over-represented in the 565 sample promoters while under-
represented in the 890 sample CDS

Promoter identification by TFBS Pair Scoring System
with Distance (PSSD)

One natural question is whether the distance between
the TFBSs in pairs is useful for promoter identification.
Since the learning dataset is too limited, we use the TFBS

pair clusters in “Clustering the TFBS pairs” to get the
distance distribution. To evaluate how the distance works,
we give pairs score with consideration of the distance
between TFBSs in learning promoter dataset. Here only
70% of the 565 promoters with high TFBS density are
taken into comparison, since when the total number of
TFBSs in learning sample promoter is very small, it may
not be a real core promoter. The score for each TFBS pair
(w1, w2) with minimum space d in promoter is defined as
[Formula (7)]
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where C(w1,w2) is the cluster that contains the TFBS pair
(w1,w2) and PC(w1,w2) is the percentage of cluster C(w1,w2)
in our pair dictionary and P[d(w1,w2)=d] is the proba-
bility of the minimum space between w1 and w2 being d.
Shown in Table 6 is the change of the discriminate rates in
the testing dataset with and without considering the TFBS
distance information. Obviously the information of dis-
tance between the TFBSs does improve the discriminate
rate significantly. In the following we will use the PSSD
as our promoter identification algorithm.

Promoter identification in Gene sequences with known
ATG

For gene sequences with start site ATG known, which
is often available from such as RefSeq mRNA or EST
sequences, the PSSD can be applied by scanning the up-
stream sequences of ATG with a 300 bp-sliding window
and 10 bp step (for consistency with the learning data).
The following is an interesting prediction result of the

PSS
SSS

TP rate

84.1%
77.6%

TN rate

82.4%
81.3%

Table 5        TP rate and TN rate in cross-validation tests by SSS
and PSS

TP rate         TN (PSS)   TN (PSSD)

0.99         0.298   0.368
0.95         0.600   0.876
0.90         0.754   0.897
0.85         0.856   0.901
0.80         0.895   0.918
0.75         0.913   0.927
0.70         0.945   0.935

Table 6        The change of the true negative rate when the true
positive (TP) rate of PSS and PSSD change

The left column is the TP rates with different thresholds. The corresponding
true negative rates of PSS and PSSD are represented by TN (PSS) and TN (PSSD)
respectively.
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human gene CKLFSF1, a member of CKLF gene family
discovered by Xu [14]. The prediction was confirmed
by wet experiment later. This is the first example that the
promoter of a gene locates in the intron of another gene,
which means that there is no absolute sequence difference
between promoters and introns—a sequence could be both
a part of promoter and a part of intron, and there is no way
to distinguish them unless considering how they related to
their coding sequences. The promoter predicting result by
the PSSD is shown in Fig. 4. FirstEF [11] successfully
predicts the first exon of CKLFSF1 but it fails to give the
core promoter region. PromoterInspector has no
predictions. This result also suggests that the prediction
results should be carefully evaluated when a predicted
promoter is not very close to TSS, or in the gene region
(from the translation start site ATG to the stop site TAA,
including introns).

Promoter identification in RefSeq database

We try to annotate the core promoters of human mRNA
sequences in RefSeq by our algorithm. We first retrieve
all human mRNAs in RefSeq from NCBI (ftp://ncbi.nlm.
nih.gov) with restriction “Homo sapiens” and 17903 se-
quences are obtained. We align these sequences back to
the human genome and 3402 sequences that have match-
ing rate more than 90% in the coding regions are obtained.
Then we extend [19] them from 5000 bp upstream to 500
bp downstream of the annotated translation start site ATG
and build a dataset named RSPD. Shown in Fig. 5 is the
length distribution of the 5' UTR of the 3402 mRNAs in
RSPD. It suggests that the 5' UTR length of mRNA is
rather conservative.

Then we scan promoter along the sequences in RSPD
with the PSSD. The window with the maximum score is

Fig. 4        Moving promoter-like score of gene CKLFSF1 by the PSSD
The gray bar is the predicted promoter region while the black bars above the horizontal axis are the exons of the newly discovered gene CKLFSF1 [14]. The predicted
promoter region lies between the 3rd and 4th exon of the upstream gene CKLF1 (data not shown, see [14]).

Fig. 5     Length distribution of the 5' UTR of the 3402 mRNAs
Shown in the vertical axis is the number of mRNAs that have corresponding 5'
UTR length (in bps) shown in the horizontal axis.

predicted to be core promoter if it is higher than the thres-
hold determined in “Promoter identification by TFBS Pair
Scoring System with Distance (PSSD)”. No promoter will
be predicted if the maximum score is lower than the
threshold. Shown in Fig. 6 is the genomic distance distri-
bution from the predicted core promoter region to the
5' end of the mRNAs in RSPD. 1771 genes (52%) are
predicted to have core promoter nearby the 5' end region
[–500, +500] while 1251 genes (37%) have core promoter
in the region of  [–3000, –500]. No significant core
promoters are reported in the region [–3000, +500] for the
remaining 379 genes (11%).

Performance Evaluations

Comparison on the data by Fickett

Eighteen independent eukaryotic sequences with 20
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experimentally mapped TSS have been compiled by Fickett
et al. [9] to evaluate the performance of the existing
promoter predicting programs. We apply our algorithm on
seventeen of these sequences data, since one anonymous
sequence (Chu et al.) can not be found in either GenBank
or EMBL. As what Fickett et al. had done, we also take
predictions from 200 bp upstream to 100 bp downstream
of TSS as correct predictions. The result is summarized in
Fig. 7. It is clear that considering the distance between

Fig. 7        Comparison with other programs on the data by
Fickett et al.
The horizontal axis is the sensitivity and the vertical axis is the specificity (base
pairs per prediction). The ‘+’ (Pair1) and ‘×’ (Pair2) are the result of the PSSD
and PSS respectively. Multiple ‘+’ and ‘×’ represent the different specificity
rates corresponding to different sensitivity rates accommodated to different pro-
grams in Fickett et al. [9].

TFBSs in each pair can increase the specificity rate.
Some predicted promoters that are not very close to

the annotated TSS (12 of the 18 annotated TSSs have
predicted promoter around them) might actually be the
core promoters, but we still count them as false positives
since there are not enough positive or negative evidences
for core promoters from wet experiments. Hence the
specificity for core promoters may be actually lower than
it should be.

TFBS clusters and CpG-island

Although the PSSD reduces the false positive rate, it
can be seen from the result in “Comparison on the data by
Fickett” that the false positive rate is still too high to pre-
dict promoters in genomic sequences. Noticing that the
TSS is strongly related to the CpG-island (see [11,20]),
while the core promoters are closely related to TSS, we
integrate the PSSD score and the CpG-island information
together to reduce the false positive rate in terms of artifi-
cial neural networks [ANN (provided by Zhang Cheng-
Fu, personal communication)]. 77 promoter sequences with
length of 700 bps from dataset HMR195 compiled by
Rodgic [17] are used as positive data points. The input for
the ANN is the CpG feature and the PSSD feature, where
the CpG features are defined in Zhang [20]. 687 segments
with length of 700 bp extracted from translation start
codon to stop codon in Rodgic [17] are used as negative
data points. The data are processed by the ANN and
plotted in Fig. 8. It can be seen that 60% core promoter
region data points (46 of the 77 promoter regions) are
correctly classified with 55 false positives. This result is
consistent with that of FirstEF, which successfully
predicts 60% (46 of the 77) TSS regions with 35 false
positives. PromoterInspector predicts 30% (23 of the 77)
TSS regions with 10 false positives.

Discussion

We have reported a new approach to analyze core pro-
moters in eukaryotic genes. It is mainly based on the po-
tential cooperation between transcription factors and their
binding sites. It is biologically reasonable and is useful for
the experimental biologists. Our preliminary study shows
that this method has promising performance even when it
is applied to genomic sequences. Moreover, the result
strongly supports the basic assumption of this method: the
promoter sequence should be interpreted as a number of
keywords sitting in a random sequence background.
The fact that 71% of the TFBS pairs in our dictionary are

Fig. 6      Genomic distance distribution from the predicted core
promoters to the 5' end of the 3402 mRNAs
The horizontal axis is the distance (in bp) from the predicted promoter to the
annotated TSS while the vertical axis is the corresponding numbers in the 3402
genes.
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associated by transcription factors gives the biologists light
of finding cooperative TFBSs through statistics model to
reduce the candidate numbers. Our result suggests that the
cooperation between the TFBSs contributes much to the
correctly transcriptional initiation of the genes. The result
on RefSeq sequences may reflect two possibilities of the
current RefSeq dataset: the lack of full 5' UTR region of
the genes or the existence of far upstream core promoters
relative to the TSS. Our result on gene CKLFSF1 suggests
the existence of the latter  possibility––at least there are
some genes with far upstream promoters. Maybe it is more
appropriate to use the triples of TFBSs or more when there
are enough data. This work is the first but main step of our
efforts towards a more accurate algorithm for identifying
the complete structure of a gene along the DNA sequences.
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Fig. 8      Scatter plots of the CpG score and the PSSD score in
promoter region and gene region
77 promoter data points are represented by ‘white circle’ (correct classification
by the ANN) and ‘white square’ (wrong classification by the ANN). ‘gray circle’
(correct classification by the ANN) and ‘gray square’ (wrong classification by
the ANN) signs are for 687 gene region data points.
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