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Abstract        The expression efficiency of the insect cells-baculovirus system used for insecticidal virus
production and the expression of medically useful foreign genes is closely related with the dynamics of
infection. The present studies develop a model of the dynamic process of insect cell infection with baculovirus
at low multiplicity of infection (MOI), which is based on the multi-infection cycles of insect cell infection at
low MOI. A mathematical model for the amount of viruses released from primary infected cells and the
amount of free viruses before secondary infected cells release viruses has been developed. Comparison of
the simulation results with the experimental data confirms qualitatively that this model is highly reasonable
before secondary infected cells release viruses. This model is considered as a base for further modeling the
entire complicated infection process.
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Baculoviruses have proven to be efficient agents for the
control of insect pests [1]. In addition, they can be used
efficiently for the production of recombinant proteins by
genetic engineering manipulation [2–5]. There is a strong
interest in the development of large-scale processes for
bio-pesticide production based on the cultivation of insect
cells and subsequent infection with baculoviruses. This

requires the design and optimization of bioreactors of rela-
tively large volume and the optimization of their operation
strategy [6,7]. Mathematical modeling should be an im-
portant tool in this task [8–11].

Batch fermentation processes usually employ high mul-
tiplicity of infection (MOI) in the early-middle exponential
phase of growth to acquire synchronous infection.
However, the design of a large-scale installation using high
MOI will involve the scale-up of two parallel processes,
one for the insect cell and another for the infecting virus
[12]. Since a large amount of viruses are essential with
high MOI, the problem of “passage effect” is bound to
appear during the virus amplification [12,13]. So some
research has been carried out using low MOI [12,14–16].
It was reported that low MOI produced higher yield of
recombinant protein [16] compared with high MOI and
resulted in maximum product titers [14,15]. In addition,
there is substantial commercial incentive in low MOI
from the view of the cost of industrialized production of
recombinant protein or bio-pesticide. The main consi-
deration in this approach is the fact that inoculation of the
viral stock can be done directly from a well-characterized
master bank into a single scaled-up bioreactor [12].

Mathematical modeling is a structured thought process
using well-established principles of physical and biologi-
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cal sciences that emphasize quantitative rather than quali-
tative aspects of science. This requires good knowledge
in high mathematics since biological phenomena are very
complicated. Modeling of infection process in different
culture systems associated with high MOI have been
presented by Licari and Bailey [15], de Gooijer et al. [8,
9], and Power and Nielsen [11]. At low MOI, only a frac-
tion of the cells are initially infected in the primary infec-
tion process (PIP) and these cells are called primary
infected cells (PICs). The uninfected cells continue to
grow, and these cells and their progeny can be infected at
some later point. This process is called secondary infec-
tion process (SIP) and the infected cells are called second
infected cells (SICs), when PICs begin to release progeny
virus. In this study, the process from the beginning of PIP
to the end of virus release from PICs is called the first
infection cycle (FIC). It is possible that during SIP not all
the cells are infected by progeny virus released from PICs
within FIC phase. Such processes will recur until all cells
are infected or all cells are too old to absorb live viruses
and even die [17]. The mathematical description of such
system is more complex than in the case of synchronic
infection. However, no model on cell infection at low MOI
has been studied.

In the present study, the mathematical model restricted
to the moment before second infected cells start to release
viruses is developed and the corresponding infection
experiment is done to demonstrate this model.

Theoretical Consideration

There are two approaches that can describe the infec-
tion cycle: the structured approach and the unstructured
approach. In the structured approach, modeling is deve-
loped following the internal events of the cell involving the
attachment, internalization, endosomal fusion, lysomal rou-
ting and nuclear accumulation of baculovirus in cells [18,
19]. However, the unstructured approach is described by
a number of events such as attachment, infection, and
releasing of viruses without considering intracellular steps,
and the independent parameter used to account for the
temporal development of the infection cycle is time. In
this research, the unstructured approach is applied. And
the following elements are included: a mathematical model
for the primary infection cycle in infected cells that might
be releasing viruses at different time, involving the cumu-
lative kinetics of viruses within the FIC; equations asso-
ciated with extracellular virus concentration, infected cell
density, virus releasing rate of single infected cell and

amount of virus release are established tracing the tempo-
ral course of infection. Several assumptions are made to
simplify the mathematical model: the number of infected
cells and the number of cells bound to viruses are consi-
dered to be the same; dissociation is not consideration as
described previously [19] since the dissociation of bound
virus is very slow compared with the endocytosis.

A model for attachment kinetics of baculovirus to
insect cells

Power et al. [20] postulated that the rate of virus
adsorption to insect cells is proportional to the virus
concentration. Valenine and Allison [21] used the Brow-
nian motion to describe the attachment kinetic of vaccinia
virus particles to cells in suspension, and assumed that
adsorption dynamics were dominated by transport dyna-
mics through a stationary film surrounding the cells. The
virus-binding rate was eventually found to be of first
order with respect to the virus concentration. In Valenine’s
model, virus adsorption rate is written as Equation (1).

where v is the extracellular virus concentration (TCID50/
ml) and αA is the first order virus binding coefficient (h–1).

At low MOI, the number of viruses added to the cell
culture is much less than the initial number of cells. A
simple approach is proposed.

The system to be investigated has cell density C (cells/
ml) and volume V (ml). Suppose that the system is di-
vided into compartments around each cell, so the number
of cells, i.e. the number of compartments is:

C×V=n
Volume of one compartment is:

V/n=1/C
If MOI<1, only part of the compartments get a virion

unit (TCID50 or PFU). The compartment with a free virion
unit is called “active compartment”. Assuming that MOI
is so low that only one virion unit appears in each active
compartment, the number of active compartments equals:

MOI×n=MOI×C ×V
When viruses are added to a batch culture, they start to

be adsorbing the suspended cells. Those viruses that are
not adsorbed yet are called free viruses or extracellular
viruses, v (TCID50/ml). Free virus accumulation rate in
batch culture equals the virus generation rate minus virus
removal rate, i.e. Equation (2)

rg rr
dt
dv
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v
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where rg is the virus generation rate, rr is the virus removal
rate. The virus removal rate equals virus attachment rate
minus virus dissociation rate (rdis), i.e.

rr=ratt–rdis

As mentioned before, virus dissociation can be neglected
in the presence of active endocytosis [19], i.e.

rdis=0,

So

rr=ratt                                                                                                  (3)

The total virus attachment rate is proportional to the
number of active compartments and inversely proportional
to the volume of a single compartment, i.e.

V×ratt =katt×MOI×C×V/(1/C)

 =katt×MOI×C2×V                                                                (4)
where katt is the attachment proportionality constant
(ml·cells–1·h–1).

The number of active compartments decreases as
virions are attached to the cells. At the initial point of
infection, the initial virus concentration vi can be written
in terms of definition of MOI:

vi=MOI×Ci

Therefore, Equation (4) can be rewritten as

V×ratt=katt×(vi/C)×C2×V
After simplification of this equation, it gives

ratt=katt×C×vi                                                                                    (5)
During PIP there is no virus generation, so free virus

Integration of Equation (7) gives

Since the cells are infected at the same rate as the
viruses are adsorbed, there is

where Cin(t) is the total number of PICs per milliliter at t
(cells/ml) and Cin(0) is the initial infected cell concentra-
tion (cells/ml).

Integration of Equation (9) gives

If time is recorded as hours post infection (hpi), τ=0.
Equation (8) and (10) become Equation (11) and (12),
respectively.

Differentiating the Equation (12) gives the infected cell
rate as

Dynamics of viral propagation

Establishment of mathematical model for virus release from
PICs   The time from virus binding to the onset of pro-
geny virus budding, during which virus penetration,
uncoating, progeny DNA replication, nucleocapsid forma-
tion and progeny nucleocapsid transport take place, is called
τVR. Virus release from an infected cell is a continuous
rather than a burst phenomenon. The time from the mo-
ment of cell infection to the end of virus budding is called
τVE. The time from commence of virus budding to the end
of virus budding is indicated as τVP, thus, τVP=τVE–τVR.
The maximum amount of viruses released from an infected
cell per unit time, i.e., the maximum virus release rate,
is assumed to be constant, αP (TCID50·cells–1·h–1). It is
assumed that there is no multi-infection of the infected
cells that are releasing progeny viruses. Based on these
statements, it is determined that virus budding begins at
τVR and finishes at τVE, but the exact profile of budding
rate is not known.

It is supposed using parameter τVR and τVE that virus
release rate of an infected cell is given by a quadratic
function, which is expressed as

rate, resulting from Equation (2), (3) and (5), is
If low MOI is considered, C can be assumed constant.

Equation (6), therefore, can be simplified as Equation (1)
where αA=katt×C, is the so called first order virus binding
coefficient (h–1). Its value can be obtained from experi-
mental data. In this way we reach Equation (1) reported in
the literature [20,21].

Suppose that virus stock is added into insect cell

culture at t=τ, in this case the process is formulated as
with the initial condition given as

vi=Ci×V, t=τ

vCk
dt
dv

××−= att                                                                                                                                                        (6)
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where x0, x1 are the two intersection points with X-axis of
the parabola, and y0 is the maximum value of the function.

In order to simplify the mathematical model, the origin
is set as the moment of adding viruses into cell culture
(Fig. 1). The X-axis is the time and Y-axis indicates the
free virus concentration, primary infected cell
concentration, virus release rate of an infected cell and the
amount of viruses released from PICs, respectively. Note
that dot lines (Fig. 1,2,4) can move along X-axis direction.

time t. Since virus release from the infected cells is a piece-
wise process, its calculation is carried out within different
ranges.

First, the amount of viruses released from PICs during
the range of τVR and τVE is calculated. A schematic repre-
sentation is shown in Fig. 2.

With this coordinate system and with the assumption of
virus release rate Equation (14), virus release rate, ψ(x),
can be expressed as

where αP is the maximum virus release rate.
The amount of viruses released from PICs (τVR≤t≤

τVR+τVE) is associated with the rate at which cells are
primarily infected and with the virus release rate at any

Therefore, the accumulative amount of viruses released
from PICs in the time range from τVR to τVE, Qp, can be
calculated using the following integral. This is formulated
taking into consideration that the number of infected cells
is zero at initial infection time:

Replacing the term Cin(t1)/dt1 and ψ(x) with Equation
(13) and (15) respectively in Equation (16) gives

In both Equation (16) and (17), the range of the outer
integral indicates that at time t, only those cells that were
infected before t–τVR can be releasing viruses. The inner
integral gives the total amount of viruses released at time t
by a single cell infected at t1. The solution to Equation (17)
obtained is shown below,

Fig. 1        Schematic representation of free virus concentration,
primary infected cell concentration, virus release rate of an
infected cell and the amount of viruses released from PICs
during the first infection cycle
x, time variable for virus release of an infected cells; t1, infection time of a cell; t,
time variable; Cin(t), the total number of PICs per ml till t; ψ(x), virus release rate
of an infected cell; Qp, total amount of viruses released from PICs till time t; v, free
virus concentration.



Fig. 2        Schematic representation of the amount of viruses
released from PICs with time in the range from τVR to τVE
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Using this formula the trend of the change in the amount
of viruses released during the time range from τVR to τVE at
given values of parameters is shown in Fig. 3.

second releasing line (from left to right shown in Fig. 4).
The second integral in Equation (18) and (19) is similar to
Equation (16) and (17) respectively.

Second, the amount of viruses released from PICs
during the time range from τVE to τVR+τVE is calculated. A
schematic representation is sketched in Fig. 4.

Therefore, the amount of viruses (Qp) released from
PICs in the range of τVE and τVR+τVE is calculated using
the following expression:

Replacing Cin(t1)/dt1 and ψ(x) in Equation (18) using
Equation (13) and (15), Equation (18) is transformed to

In both Equation (18) and (19), the first integral calcu-
lates the total amount of viruses released by the cells that
have finished releasing at time t, such as the case of the

Remark: The process is divided into these two stages
because during τVE and τVR+τVE, there are cells that have
finished releasing virus at time t and for these cells, the
releasing process does not fit in the first formula, i.e. Equa-
tion (16) or (17), and thus the calculation needs to be
considered separately.

The solution to Equation (19) obtained is shown below:

)]}366366 332332322
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Fig. 3        Simulation of viruses released from PICs in the range
from τVR to τVE

MOI is 0.10, τVR is 8 hpi, and τVE is 24 hpi. αP is 0.015 TCID50·cells–1·h–1.
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Using this formula the trend in the change of the amount
of viruses released in the time range from τVE to τVR+τVE at
given values of parameters is shown in Fig. 5. The trend
in the change of the total amount of viruses released dur-
ing the time range from τVR to τVR+τVE is shown in Fig. 13.

virus adsorption rate Equation (1), a balance of the viral
population can be written as differential Equation (20) with
the initial condition:

Solving Equation (17) and (20) with parameters such
as  αA,  τVR,  τVE,  τVP,  v i and αP using software
“Mathematica”, the change of free virus concentration with
time t can be obtained and this can be applied for simula-
tion of the behavior of the system.

Materials and Methods

Stock of cells and viruses

A cell line (IPLB-Sf-21) from pupal ovaries of the fall
armyworm S. frugiperda [20] was maintained in 25 cm2

T-flasks as adherent cultures, containing TC-100 from
Sigma [21] and supplemented with 10% fetal bovine
serum (FBS) from Sigma. Subcultures were made every
4–5 days to maintain the cells in the exponential phase.
Cells were obtained from Volcani Center, Institute of Plant
Protection, ARO, Israel. When cells were grown in
suspension, 0.2% Pluronic F-68 (W/V) from Sigma was
added to the medium.

A strain of Anticarsia gemmatalis multicapsid nuclear
polyhedrosis virus (AgMNPV) isolated from an infected
larva of Anticarsia gemmatalis [20] was used. The virus
inoculum was prepared by amplification of infected IPLB-
Sf-21 cells in suspension cultures. Virus stock was
obtained from INTEBIO, Universidad Nacional del Litoral,
Argentina.

Cultivation

All experiments were performed in 250-ml Erlenmeyer
(Boro 3.3) shaker flasks rocked at a frequency of 70 rpm,
containing 50 ml of cell suspension in duplicates. The tem-
perature was maintained at 27 °C. Cells from T-flasks were
transferred to suspension culture in Erlenmeyer flasks. This
procedure is followed with the goal of diminishing the lag
phase in the following stages. When cells in suspension
culture of the first Erlenmeyer flask grew to the late expo-
nential phase (approximately after four days depending on
the initial cell density), the cells were transferred to six
Erlenmeyer flasks (control and two different MOIs,
duplicated) and diluted with fresh medium to a cell
concentration of 1.9×105 cells/ml. The spent medium was
19.2 percent of total medium. The cell cultures after 24
hours are considered to be at early exponential phase and

From Fig. 13, it is indicated that the amount of viruses
released from PICs increases slowly at the beginning, fast
during the middle and eventually reaches a constant of the
value. This indicates that most of the infected cells have
finished the budding. Hence, this model used is reasonable.
Establishment of mathematical model for free viruses
before 2τVR    As described before, it is too complicated to
give a solution to the mathematical model describing the
whole infection process in the present work. Hence, the
mathematical model for free viruses will be limited to the
moment before SICs start to release viruses, i.e. before
2τVR. During the whole infection process the cultivated
cells always absorb free viruses once virus release from
the infected cells starts. Adsorption rate continuously
changes depending on the different abilities of adsorption
of cells in different cell growth phases and this may be the
origin of the multi-peaks phenomena. In the present model
limited to the time before 2τVR, it is assumed that αA re-
mains constant within 16 hours, i.e. those viruses being
released from PICs are simultaneously adsorbed with the
same αA as in PIP.

Virus generation rate equals the derivative of the amount
of viruses released from PICs before 2τVR, i.e. derivative
of Equation (17). According to the free virus accumula-
tion rate Equation (2), virus removal rate Equation (3) and

Fig. 5        Simulation of viruses released from PICs in the range
from τVE to τVR+τVE

MOI is 0.10, τVR is 8 hpi, and τVE is 24 hpi. αP is 0.015 TCID50·cells–1·h–1.

VRA
p ,A τα α ==⇒−= − tevv

dt
dQ

dt
dv t

D
ow

nloaded from
 https://academ

ic.oup.com
/abbs/article/36/11/729/53 by guest on 24 April 2024



Nov., 2004                           You-Hong ZHANG et al.: A Mathematical Model of Baculovirus Infection on Insect Cells at Low MOI                            735

reached a density of approximate 4.0×105 cells/ml. At this
time cells in these Erlenmeyer flasks were infected with
MOI 0.10 and 0.01.

Sampling for measurement of NOVs was performed
every 1 hour during the first 6 hours to investigate the
kinetics of virus attachment. Considering that the process
of budding in vitro [24] starts at 10–12 hpi, samples for
NOVs were taken at 8, 10, 12, 18, 24 hpi. Samples for
unstained cell concentration in the infected cultures were
also taken every 24 hours. Samples were centrifuged at
10,000 g for 1 min, and the supernatants and cellular
pellets were stored at –70 °C and 4 °C respectively before
assay. The supernatants were used as samples of NOVs.
Cellular pellets were used as samples of OVs from 24 hpi.

Cell counting and virus titer

The number of cells was measured microscopically using
a Neubauer hemocytometer. Cells that excluded the
colorant were considered viable using trypan blue dye
exclusion method at the concentration of 0.04%. The
infectivity of the NOV was measured using an end-point
dilution assay [25].

Results and Discussion

The objective of simulation is to confirm qualitatively if
the mathematical model accurately describes the system
and to determine the values of the parameters of the model
using the experimental data and conditions. Trend in the
behavior of the system with the changes of parameters
and conditions is obtained during the simulation process.
Although the simulation is elementary due to the limited
number of experiments, this is a key and a starting point
for the modeling of viral infection of insect cells at low
MOI.

Fitting of the primary attachment phase

Experimental results are shown in Fig. 6. It suggests
that virus adsorption rate follows a first order kinetics with
respect to virus concentration during the first six hours.
On the other hand, based on the theoretical analysis, a
first order model for virus attachment in suspended cell
culture is obtained. The first order binding coefficient, αA,
is obtained for the case of MOI of 0.10 and 0.01. The αA
values were 1.000 and 1.002 respectively. The fit of this
first order model for two cases are shown in Fig. 7 and
Fig. 8. For simulations using Equation (1), the amount of
viruses added initially in the experiment is used as vi. Since
there is a deviation between the initial experiment data and

Fig. 6        Unbound virus concentration (TCID50/ml) in Sf-21
cell culture infected at MOI of 0.10 and 0.01 with time

Fig. 7        Unbound virus titre (TCID50/ml) in Sf-21 cell culture
infected at an MOI of 0.10 and cell density of 4.05×105 cells/ml

Fig. 8        Unbound virus titre (TCID50/ml) in Sf-21 cell culture
infected at an MOI of 0.01 and cell density of 4.10×105 cells/ml
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the intercept value of the trend line in case of infection at
MOI 0.10 (Fig. 6), the simulation using the initial experi-
mental data (Fig. 7) also shows some deviation, which is
maximal around 2 hpi, which might be artificially caused
in the virus titre detection.

Simulation of the primary infection process

As discussed in “ Theoretical Consideration”, solving
Equation (17) and (20) with the given values of para-
meters such as αA, τVR, τVE, τVP, vi and αP using the soft-
ware “Mathematica”, the concentration of free virus at
time t can be obtained before SICs start releasing the
second progeny viruses. The values of parameters are fixed
as followings:

At an MOI of 0.10,
a) Initial cell density, Ci=4.05×105 cells/ml; initial virus
concentration, vi=Ci×MOI=4.05×104 TCID50/ml.
b) The first order binding coefficient (αA) obtained from
experimental data, is 1.000 h–1.
c) The time from the moment of cell infection to the start-
ing of virus budding, τVR, can be approximately obtained
from the starting point of the increase in virus titre. It is
reported [24] that the process of budding in vitro starts at
10–12 hpi. From the present experimental data this
process begins slightly earlier and τVR equals 8 hpi.
d) The time period from cell infection to the end of virus
budding, τVE, could not be obtained in terms of the experi-
mental data in case of infection with low MOI because
progeny viruses released from PICs starting to bud at τVR
infect cells simultaneously and the SICs start budding
secondary progeny viruses at the next τVR. Hence it is
difficult to observe the ending point of budding from the
present experimental data. However, it is reported [24]
that the process of budding in vitro is completed around
24 hpi. This is an appropriate starting value of τVR for the
simulation.
e) The parameter, τVP, equals τVE minus τVR. Hence, once
τVE is determined, τVP is known, i.e., τVP=τVE–τVR.
f) The parameter, αP, the maximum virus release rate
(TCID50·cells–1·h–1), i.e. the maximum virus release amount
from a single cell per hour, can be determined by adjust-
ing the value of αP to fit the experimental data. The value
of αP is probably dependent on cell condition, i.e. inocu-
lum age, nutrient conditions (culture environment includ-
ing nutrient substrates and oxygen supplies) and on the
value of MOI. These factors may determine the values of
τVR, τVE and τVP, which are biological-dependent. Para-
meters such as αP, τVR, τVE and τVP are called “biological-
dependent parameters” and are therefore bound to a
certain degree of uncertainty.

Fixing the value of τVE at 24 hpi and since the experi-
mentally observed value of τVR is 8 hpi, we obtain τVP=
16 h. Taking the value of αP as 0.014, 0.015 and 0.016
TCID50·cells–1·h–1, numerical solution of the differential
Equation (20) can be obtained using “Mathematica” and
the following values of parameters:

vi=4.05×104 TCID50/ml; αA=1.000 h–1;
τVR=8 hpi; τVE=24 hpi; τVP=16 h;
αP=0.014, 0.015 or 0.016 TCID50·cells–1·h–1

The results of the calculation are shown with solid lines
in Fig. 9. The figure shows that the amount of free
viruses increases with time as the amount of viruses
released from PICs increases with time before 2τVR (Fig.
3, Fig. 13). Comparing the value of free virus concentra-
tion (Fig. 9) to the value of the released virus concentra-
tion (Fig. 3, Fig. 13) reveals that part of these released
viruses are simultaneously adsorbed by the suspended cells.
The trend of the concentration of free viruses with time
predicted by the simulation is similar to that of experimen-
tal data, which indicates that the model is reasonable. The
simulation shows that the amount of free viruses increases
as αP increases. Comparing the results of simulations
under αP 0.014; 0.015; 0.016 TCID50·cells–1·h–1 with the
experimental data, the value αP of the best fitness is
probably 0.015 TCID50·cells–1·h–1.

As a second step, fixing the value of αP at 0.015
TCID50·cells–1·h–1 and then adjusting the value of τVE as
23, 24 and 25 hpi and since τVR=8 hpi, τVP=15; 16; 17 h,
numerical solution of differential Equation (20) could be
obtained using “Mathematica” and the following values of

Fig. 9        Simulation of unbound virus concentration (TCID50/
ml) before SICs release virus
MOI is 0.10, τVR is 8 hpi, and τVE is 24 hpi. αP is 0.014, 0.015 and 0.016
TCID50·cells–1·h–1, respectively.

D
ow

nloaded from
 https://academ

ic.oup.com
/abbs/article/36/11/729/53 by guest on 24 April 2024



Nov., 2004                           You-Hong ZHANG et al.: A Mathematical Model of Baculovirus Infection on Insect Cells at Low MOI                            737

parameters:
vi=4.05×104 TCID50/ml; αA=1.000 h–1;
τVR=8 hpi; τVE=23, 24 or 25 hpi; τVP=15, 16 or 17 h;
αP=0.015 TCID50·cells–1·h–1

The results are shown in Fig. 10. The simulation shows
that the amount of free viruses increases with time as the
amount of viruses released from PICs increases with time
before 2τVR (Fig. 3). Comparing the free virus concentra-
tion (Fig. 10) with the released virus concentration (Fig.
3) reveals that part of these released viruses are simulta-
neously adsorbed by the suspended cells. The trend of the
free virus concentration given by the simulation is similar
to the experimental data, which indicates that the model is
sensible. At the same time, it is seen that the amount of
free viruses decreases as τVE increases. Comparing the
results of the simulations under τVE 23, 24, and 25 hpi
with the experimental data, the value of τVE that seems to
be more reasonable is 24 hpi.

point. In the present work the simulation is mainly qualita-
tive and hence an exact optimization of the parameters is
not imperative.

After the fittest value of τVE and αP are determined,
simulation of the accumulation of viruses released from
PICs is done using the solutions of Equation (17) and (20).
The results of this run are shown in Fig. 3, 5 and 13. The
simulation of the infected cells of this run can be done
using Equation (13), and it is shown in Fig. 14. It is indi-
cated that the infected cell concentration increases fast at
the beginning of infection and reaches a stable value after
6 hpi (Fig. 14), i.e., the concentration of the infected cells
is almost unchanged from 6 hpi to 8 hpi (τVR), which means
that the infection rate is almost zero when approaching
τVR. This is consistent with the result of the simulation for
the amount of viruses released from PICs as shown in
Fig. 13. The accumulative amount of the released viruses
also approaches a constant value at τVR+τVE (Fig. 13).

For the case of MOI of 0.01, the simulation process of
this case is similar to the case of MOI of 0.10, but the
values of some parameters are different. The process is
simply described by the following data.
Ci=4.10×105 cells/ml, vi=Ci×MOI=4.10×103 TCID50/ml,
αA=1.0021 h–1, τVR=8 h. τVP can be estimated once τVR is
determined.

The fittest values of τVE and αP were determined from
the simulations. First the value of τVE is fixed at 24 hpi,
and since τVR=8 hpi, τVP=16 h. Testing the value of αP as
0.053, 0.054 and 0.055 TCID50·cells–1·h–1, numerical
solution of the differential Equation (20) can be obtained
using “Mathematica” under the given values of para-
meters vi, αA, τVR, τVE, τVP, and αP.

The results of calculation are shown with solid lines in
Fig. 11. The simulation result shows that the amount of
free viruses increases with time. The trend of the concen-
tration of free viruses predicted by the simulation is simi-
lar to that of the experimental data, suggesting that the
model is reasonable. The figure shows that the amount of
free viruses increases as αP increases. Comparing the re-
sults of the simulations under αP 0.053, 0.054 and 0.055
TCID50·cells–1·h–1 to the experimental data, the value αP
giving the best fit was 0.054 TCID50 /cell h. Comparing
the results of simulations of MOIs of 0.10 and 0.01, the
value of αP, 0.015 TCID50·cells–1·h–1, in case of MOI of
0.10, is less than the value of αP, 0.054 TCID50·cells–1·h–1,
in case of MOI of 0.01. From the biological point of view
this is not clear. One possible explanation for this unex-
pected result may be found in the assumption of our model
that one cell adsorbs only one viral unit and not more.
This assumption should be closer to reality when MOI is

From the above discussion the best fitting value of τVE
and αP are 24 hpi and 0.015 TCID50/ml respectively.
Strictly, the following expression should be used when
the best fitting values are determined,

where E(τVE,αP) indicates the sum of errors between the
experimental data and the calculated values of the model;
i, the number of experimental samples; vexp, the experi-
mental value at time t and vmod, the calculated value of the
model at the same time as the corresponding experimental

Fig. 10        Simulations of unbound virus titre (TCID50/ml)
before SICs release virus
MOI is 0.10, τVR is 8 hpi, and τVE is 23, 24 or 25 hpi. αP is 0.015 TCID50·
cells–1·h–1.

imummin

2

modexp ])([),( ∑ −=
i
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low. Therefore, the number of the real infected cells in
case of relative high MOI might be less than that calcu-
lated by the model, and hence, the value of αP obtained by
fitting model to the experimental data might be less than
the actual one. But in case of very low MOI such as 0.01
the model of virus adsorption to cells is closer to reality.
So the value of αP obtained under MOI of 0.01 is more
reasonable than the value under MOI of 0.10.

As a second step, fixing the value of αP at 0.045
TCID50·cells–1·h–1 and then adjusting the value of τVE as
23.5, 24 and 24.5 hpi and since τVR=8 hpi, τVP =15.5, 16,
or 17.5 h, numerical solution of the differential Equation
(20) could be obtained using “Mathematica” under the given
values of parameters vi, αA, τVR, τVE, τVP, and αP.

The results of calculation are shown with solid lines in
Fig. 12. It can be seen that the amount of free viruses
increases with time. The trend of the concentration of
free viruses predicted by the simulation is similar to that
of the experimental data, which indicates again that the
model is reasonable. At the same time, it can be seen that
the amount of free viruses decreases before 2τVR as τVE is
increased. Comparing the results of the simulations under
τVE 23.5, 24 and 24.5 hpi and the experimental data, the
value of τVE of the best fit is 24 hpi.

After the best fitted values of τVE, 24, and αP, 0.054 are
determined in case of MOI of 0.01, simulations of the
accumulative amount of viruses released from PICs from
τVR to τVE and from τVE to τVR+τVE are done using the solu-
tions of equations (17) and (19) respectively. The trend of
change in the total amount of viruses released during the

time range from τVR to τVR+τVE is shown in Fig. 13. From
Fig. 13 it is seen that the amount of viruses released from
PICs in the case of MOI 0.01 increases slowly at the
beginning, fast during the middle and eventually reaches a
stable value, which indicates that most infected cells have
ended the budding phase.

Simulation of the infected cells at MOI 0.01 is done
using Equation (13) and it is shown in Fig. 14. It is shown
that the infected cell concentration increases fast at the
beginning of the infection and reaches a stable value after

Fig. 11        Simulations of unbound virus titre (TCID50/ml)
before SICs release virus
MOI is 0.01, τVR is 8 hpi, and τVE is 24 hpi. αP is 0.053, 0.054 and 0.055
TCID50·cells–1·h–1, respectively.

Fig. 12          Simulations of unbound virus titre (TCID50/ml)
before SICs release virus
MOI is 0.01, τVR is 8 hpi, and τVE is 23.5, 24.0 or 24.5 hpi. αP is 0.054
TCID50·cells–1·h–1.

Fig. 13         Comparisons of simulations of viruses released from
PICs from τττττVR to τττττVE+τττττVR
τVR is 8 hpi, τVE is 24 hpi. MOI is 0.10 and 0.01, and αP is 0.015 and 0.054
TCID50·cells–1·h–1, respectively.
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7 hpi, i.e. concentration of the infected cells is almost
unchanged from 7 hpi to 8 hpi (τVR). It also means that the
rate at which cells are infected is almost zero approaching
τVR. This is consistent with the result of the simulation for
the amount of viruses released from PICs shown in Fig.
13 in which the accumulative amount of the released vi-
ruses approaches a plateau at τVR+τVE. In addition, Fig. 14
also shows the comparison of the PICs concentration
under MOIs of 0.10 and 0.01. It can be seen that the
higher the MOI the higher the infected cell concentration,
as expected. Fig. 13 shows the comparison of the amount
of viruses released from PICs under MOIs of 0.10 and
0.01. It is shown that the amount of the released viruses
under of MOI 0.10 is larger than under MOI 0.01 as the
number of cells infected is higher (Fig.14).

Conclusions

A first order model of virus adsorption at low MOI is
presented to explain experimental data. A model developed
for free viruses before secondary infected cells release
viruses, i.e. before 2τVR, shows good agreement with
experimental data.

There are piecewise connected functions involved
in the differential equations of the model for free viruses
and an accurate description of the system should also
consider the different stages of the infected cells. Hence
the model becomes very complex. However, these ideas
involved in the present model serve as a significant

foundation for future research.
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Fig. 14         Comparison of simulation of the infected cell
concentrations
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